Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Good vibrations: Using light-heated water to deliver drugs - Researchers use near-infrared light to warm water-infused polymeric particles

In this schematic representation, a hydrated polymeric nanoparticle is exposed to near-infrared light. The NIR heats pockets of water inside the nanoparticle, causing the polymer soften and allowing encapsulated molecules to diffuse into the surrounding environment.

Credit: UC San Diego School of Medicine
In this schematic representation, a hydrated polymeric nanoparticle is exposed to near-infrared light. The NIR heats pockets of water inside the nanoparticle, causing the polymer soften and allowing encapsulated molecules to diffuse into the surrounding environment.

Credit: UC San Diego School of Medicine

Abstract:
Researchers from the University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, in collaboration with materials scientists, engineers and neurobiologists, have discovered a new mechanism for using light to activate drug-delivering nanoparticles and other targeted therapeutic substances inside the body.

Good vibrations: Using light-heated water to deliver drugs - Researchers use near-infrared light to warm water-infused polymeric particles

San Diego, CA | Posted on April 1st, 2014

This discovery represents a major innovation, said Adah Almutairi, PhD, associate professor and director of the joint UC San Diego-KACST Center of Excellence in Nanomedicine. Up to now, she said, only a handful of strategies using light-triggered release from nanoparticles have been reported.

The mechanism, described in the April 1, 2014 online issue of ACS Nano, employs near-infrared (NIR) light from a low-power laser to heat pockets of water trapped within non-photo-responsive polymeric nanoparticles infused with drugs. The water pockets absorb the light energy as heat, which softens the encapsulating polymer and allows the drug to be released into the surrounding tissue. The process can be repeated multiple times, with precise control of the amount and dispersal of the drug.

"A key advantage of this mechanism is that it should be compatible with almost any polymer, even those that are commercially available," said Mathieu Viger, a post-doctoral fellow in Almutairi's laboratory and co-lead author of the study. "We've observed trapping of water within particles composed of all the biodegradable polymers we've so far tested."

The method, noted Viger, could thus be easily adopted by many biological laboratories.

The combined use of hydrated polymers and near-infrared light appears to resolve a host of technological and health barriers that have hindered previous, similar approaches. Earlier efforts to use NIR-triggered release have not been widely exploited because they required special designer polymers, expensive high-powered lasers and/or the co-encapsulation of inorganic particles whose safety in the body remains questionable.

The new method described by Almutairi and colleagues in the departments of Mechanical and Aerospace Engineering, Neuroscience, and Chemistry and Biochemistry at UC San Diego uses NIR at a vibrational wavelength cued to excite water molecules, which absorb the optical energy and convert it to heat. NIR is capable of penetrating biological tissues to greater depths than visible or ultraviolet light.

Co-lead author Wangzhong Sheng, a graduate student in Department of Mechanical and Aerospace Engineering, explained the selectivity of heating by comparing the trapped water within particles to a glass of water and the surrounding water within the solution or tissue to a bathtub. The smaller amount of water is heated much more rapidly because of the enormous volume difference.

An obvious use of the method, said Almutairi, is light-triggered drug delivery, but with more research, she anticipates the new method could provide a variety of industrial, medical and scientific applications, including "any technological application requiring that chemistry be controlled in time and in space, such as in catalysis or self-repairing materials or light-activated sunscreens or pesticide dosing."

###

Co-authors include Carl-Johan Carling, Jacques Lux and Caroline de Gracia Lux, UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences; Kim Dore and Roberto Malinow, UCSD Department of Neurosciences; Ali H. Alhasan, UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences and UCSD Center of Excellence in Nanomedicine; and Madeleine Grossman, UCSD Department of Chemistry and Biochemistry.

Funding for this research came, in part, from a National Institutes of Health New Innovator Award (1 DP2 OD006499-01) and NIH grant R01AG032132. This research is in partnership with the King Abdulaziz City of Science and Technology.

####

For more information, please click here

Contacts:
Scott LaFee

619-543-6163

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Chemistry

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Fun with Lego (molecules) January 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Nanomedicine

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Nanoparticles Make Fertility Possible during Consumption of Anticancer Drugs February 4th, 2016

Discoveries

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Food/Agriculture/Supplements

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Herbal Extracts Applied to Synthesize Titanium Dioxide Nanoparticles January 28th, 2016

Antibacterial Nanocomposites Designed in Iran for Foodstuff Packaging January 20th, 2016

HSI 2016 | Hyperspectral Imaging and Applications conference is announced January 13th, 2016

Personal Care

Ceapro Presents Unique Advantages of Its Disruptive Pressurized Gas Expanded Technology (PGX) at 2015 Composites at Lake Louise November 10th, 2015

Nanofilm Introduces Clarity AR Lens Cleaner for Anti-Reflective Superhydrophobic Lenses August 20th, 2015

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic