Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-paper filter removes viruses

The illustration shows the nanofibers in white and the virus in green.

Photograph: Björn Syse
The illustration shows the nanofibers in white and the virus in green.

Photograph: Björn Syse

Abstract:
Nanotechnology and Functional Materials, Uppsala University have developed a paper filter, which can remove virus particles with the efficiency matching that of the best industrial virus filters. The paper filter consists of 100 percent high purity cellulose nanofibers, directly derived from nature.

Nano-paper filter removes viruses

Uppsala, Sweden | Posted on March 31st, 2014

The research was carried out in collaboration with virologists from the Swedish University of Agricultural Sciences/Swedish National Veterinary Institute and is published in the Advanced Healthcare Materials journal.

Virus particles are very peculiar objects- tiny (about thousand times thinner than a human hair) yet mighty. Viruses can only replicate in living cells but once the cells become infected the viruses can turn out to be extremely pathogenic. Viruses can actively cause diseases on their own or even transform healthy cells to malignant tumors.

"Viral contamination of biotechnological products is a serious challenge for production of therapeutic proteins and vaccines. Because of the small size, virus removal is a non-trivial task, and, therefore, inexpensive and robust virus removal filters are highly demanded" says Albert Mihranyan, Associate Professor at the Division of Nanotechnology and Functional Materials, Uppsala University, who heads the study.

Cellulose is one of the most common materials to produce various types of filters because it is inexpensive, disposable, inert and non-toxic. It is also mechanically strong, hydrophyllic, stable in a wide range of pH, and can withstand sterilization e.g. by autoclaving. Normal filter paper, used for chemistry, has too large pores to remove viruses.

The undergraduate student Linus Wågberg, Professor Maria Strømme, and Associate Professor Albert Mihranyan at the Division of Nanotechnology and Functional Materials, Uppsala University, in collaboration with virologists Dr. Giorgi Metreveli, Eva Emmoth, and Professor Sándor Belák from the Swedish University of Agricultural Sciences (SLU)/Swedish National Veterinary Institute (SVA), report a design of a paper filter which is capable of removing virus particles with the efficiency matching that of the best industrial virus filters. The reported paper filter, which is manufactured according to the traditional paper making processes, consists of 100 percent high purity cellulose nanofibers directly derived from nature.

The discovery is a result of a decade long research on the properties of high surface area nanocellulose materials, which eventually enabled the scientists to tailor the pore size distribution of their paper precisely in the range desirable for virus filtration.

Previously described virus removal paper filters relied heavily on interception of viruses via electrostatic interactions, which are sensitive to pH and salt concentrations, whereas the virus removal filters made from synthetic polymers and which rely on size-exclusion are produced through tedious multistep phase-inversion processing involving hazardous solvents and rigorous pore annealing processing.

Incidentally, it was the Swedish chemist J.J. Berzelius (1779-1848), one of the most famous alumni of Uppsala University, who was the first one to use the pure wet-laid-all-rag paper for separation of precipitates in chemical analysis. In a way, the virus removal nano-paper filter developed by the Uppsala scientists is the modern day analogue of the widely popular Swedish Filter Paper developed by Berzelius nearly two centuries ago.

####

For more information, please click here

Contacts:
Albert Mihranyan

46-701-679-037

Copyright © Uppsala University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article is published in the Advanced Healthcare Materials journal on March 31, 2014:

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Discoveries

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Materials/Metamaterials

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE