Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Leti to Demonstrate Wireless High Data Rate Li-Fi Prototype at Light + Building 2014 in Frankfurt

Abstract:
CEA-Leti will demonstrate its new prototype for wireless high data rate Li-Fi (light fidelity) transmission at Light + Building 2014 in Frankfurt, Germany, March 30-April 4. The technology employs the high-frequency modulation capabilities of light-emitting diode (LED) engines used in commercial lighting. It achieves throughputs of up to 10Mb/s at a range of three meters, suitable for HD video streaming or Internet browsing, using light power of less than 1,000 lumens and with direct or even indirect lighting.

Leti to Demonstrate Wireless High Data Rate Li-Fi Prototype at Light + Building 2014 in Frankfurt

Grenoble, France | Posted on March 29th, 2014

With this first proof of concept and its expertise in RF communications, Leti forecasts data transmission rates in excess of 100Mb/s with traditional lighting based on LED lamps using this technology approach and without altering the high-performance lighting characteristics.

Visible light communications (VLC), or Li-Fi, have gained significant momentum in recent years, primarily because of expectations that LEDs will become predominant in the lighting market. Indeed, as part of its Ecodesign process, the European Union established a schedule for LED lighting penetration (regulation No. 1194/2012). Halogen lamps will be phased out and replaced by LED lighting by Sept. 1, 2016, in 30 European countries.

Moreover, because LEDs can be modulated at very high frequencies and their oscillations are invisible to humans, they permit information transmission at very high data rates.

Other technical and market factors also are increasing interest in data transmission through lighting. These include crowding of the conventional radiofrequency (RF) spectrum, the mobile data-traffic explosion in cellular networks, and the need for wireless data transmission without electromagnetic field (EMF) interference.

The demonstration is part of a Leti project begun in 2013 to achieve a high data rate Li-Fi prototype by applying Leti's expertise in digital communications, hardware prototyping and solid-state lighting.

The optical system consists of an A19 lamp based on LEDs at the transmitter and an avalanche photodiode at the receiver. The digital communication component is implemented on a proprietary and reconfigurable platform that carries out a flexible multi-carrier modulation.

Leti, which is demonstrating the Li-Fi capability to show a promising alternative to conventional RF wireless communications, is also focusing on component optimization to offer a bidirectional link.

The prototype was demonstrated at Forum LED Europe in Paris in 2013 and at CES in Las Vegas earlier this year.

####

About CEA-Leti
By creating innovation and transferring it to industry, Leti is the bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. Backed by its portfolio of 2,200 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched more than 50 startups. Its 8,000m≤ of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. Letiís staff of more than 1,700 includes 200 assignees from partner companies. Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38 78 02 26


Agency
+33 6 64 52 81 10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Wireless/telecommunications/RF/Antennas/Microwaves

Scientists move 1 step closer to creating an invisibility cloak July 15th, 2016

A little impurity makes nanolasers shine: ANU media release July 6th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

Integrated trio of 2-D nanomaterials unlocks graphene electronics applications: Voltage-controlled oscillator developed at UC Riverside could be used in thousands of applications from computers to wearable technologies July 7th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Events/Classes

Nanometrics Announces Upcoming Investor Events July 20th, 2016

n-tech Research Announces August 3, 2016 Date for Smart Coatings Webinar July 18th, 2016

Instrumented Indentation Expert Addresses Trends with Industry Leaders: Leading nanoindentation expert hosts webinar discussing theory and practice of instrumented indentation July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic