Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Rainbow-catching waveguide could revolutionize energy technologies: By slowing and absorbing certain wavelengths of light, engineers open new possibilities in solar power, thermal energy recycling and stealth technology

The image shows a “multilayered waveguide taper array.” The different wavelengths, or colors, are absorbed by the waveguide tapers (thimble-shaped structures) that together form an array.
The image shows a “multilayered waveguide taper array.” The different wavelengths, or colors, are absorbed by the waveguide tapers (thimble-shaped structures) that together form an array.

Abstract:
More efficient photovoltaic cells. Improved radar and stealth technology. A new way to recycle waste heat generated by machines into energy.

Rainbow-catching waveguide could revolutionize energy technologies: By slowing and absorbing certain wavelengths of light, engineers open new possibilities in solar power, thermal energy recycling and stealth technology

Buffalo, NY | Posted on March 28th, 2014

All may be possible due to breakthrough photonics research at the University at Buffalo.

The work, published March 28 in the journal Scientific Reports, explores the use of a nanoscale microchip component called a "multilayered waveguide taper array" that improves the chip's ability to trap and absorb light.

Unlike current chips, the waveguide tapers (the thimble-shaped structures pictured above) slow and ultimately absorb each frequency of light at different places vertically to catch a "rainbow" of wavelengths, or broadband light.

The paper, "Broadband absorption engineering of hyperbolic metafilm patterns," is here: http://bit.ly/1g72Is5.

"We previously predicted the multilayered waveguide tapers would more efficiently absorb light, and now we've proved it with these experiments," says lead researcher Qiaoqiang Gan, PhD, UB assistant professor of electrical engineering. "This advancement could prove invaluable for thin-film solar technology, as well as recycling waste thermal energy that is a byproduct of industry and everyday electronic devices such as smartphones and laptops."

Each multilayered waveguide taper is made of ultrathin layers of metal, semiconductors and/or insulators. The tapers absorb light in metal dielectric layer pairs, the so-called hyperbolic metamaterial. By adjusting the thickness of the layers and other geometric parameters, the tapers can be tuned to different frequencies including visible, near-infrared, mid-infrared, terahertz and microwaves.

The structure could lead to advancements in an array of fields.

For example, there is a relatively new field of advanced computing research called on-chip optical communication. In this field, there is a phenomenon known as crosstalk, in which an optical signal transmitted on one waveguide channel creates an undesired scattering or coupling effect on another waveguide channel. The multilayered waveguide taper structure array could potentially prevent this.

It could also improve thin-film photovoltaic cells, which are a promising because they are less expensive and more flexible that traditional solar cells. The drawback, however, is that they don't absorb as much light as traditional cells. Because the multilayered waveguide taper structure array can efficiently absorb the visible spectrum, as well as the infrared spectrum, it could potentially boost the amount of energy that thin-film solar cells generate.

The multilayered waveguide taper array could help recycle waste heat generated by power plants and other industrial processes, as well as electronic devices such as televisions, smartphones and laptop computers.

"It could be useful as an ultra compact thermal-absorption, collection and liberation device in the mid-infrared spectrum," says Dengxin Ji, a PhD student in Gan's lab and first author of the paper.

It could even be used as a stealth, or cloaking, material for airplanes, ships and other vehicles to avoid radar, sonar, infrared and other forms of detection. "The multilayered waveguide tapers can be scaled up to tune the absorption band to a lower frequency domain and absorb microwaves efficiently," says Haomin Song, another PhD student in Gan's lab and the paper's second author.

Additional authors of the paper include Haifeng Hu, Kai Liu, Xie Zeng and Nan Zhang, all PhD candidates in UB's Department of Electrical Engineering.

The National Science Foundation sponsored the research.

Gan is a member of UB's electrical engineering optics and photonics research group, which includes professors Alexander N. Cartwright (also UB vice president for research and economic development), Edward Furlani and Pao-Lo Liu; associate professor Natalia Litchinitser; and assistant professor Liang Feng.

The group carries out research in nanophotonics, biophotonics, hybrid inorganic/organic materials and devices, nonlinear and fiber optics, metamaterials, nanoplasmonics, optofluidics, microelectromechanical systems (MEMS), biomedical microelectromechanical systems (BioMEMs), biosensing and quantum information processing.

####

For more information, please click here

Contacts:
Cory Nealon
Media Relations Manager, Engineering, Libraries, Sustainability
Tel: 716-645-4614

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Could black phosphorus be the next silicon? New material could make it possible to pack more transistors on a chip, research suggests July 7th, 2015

A cool way to form 2-D conducting polymers using ice: POSTECH scientists develop breakthrough technique to easily optimize electrical properties of Polyaniline nanosheets to an unprecedented level in an environmental-friendly and inexpensive way July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

MEMS

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

MEMS Industry Group Hosts Its First MEMS/Sensors Conference Session at Transducers 2015: MIG Speakers Will Explore Technology Transfer, Emerging MEMS/Sensors, Manufacturing Infrastructure and Process Technology, June 23 in Anchorage June 3rd, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Quantum Computing

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Discoveries

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Military

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Photonics/Optics/Lasers

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project