Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A mathematical equation that explains the behavior of nanofoams

nanofoams
nanofoams

Abstract:
A research study, participated in by Universidad Carlos III de Madrid (UC3M), has discovered that nanometric-size foam structures follow the same universal laws as does soap lather: small bubbles disappear in favor of the larger ones.

A mathematical equation that explains the behavior of nanofoams

Madrid, Spain | Posted on March 22nd, 2014

The scientific team, made up of researchers from the Consejo Superior de Investigaciones Científicas (Spanish National Research Council) - CSIC, the Universidad Pontificia Comillas de Madrid- UPCO, and UC3M, reached this conclusion after producing and characterizing nanofoam formed by ion radiation on a silicon surface. This study, recently published in the journal, Physical Review Letters, describes the evolution of these nanostructures during the time of irradiation.

For this purpose, the scientists carried out an experiment that consisted in "bombardment" of a small silicon plate with energetic particles from a plasma. The objective was to observe how the surface of this crystal reacted to these different "attacks" from this type of ion radiation (ions are used: atoms of a gas that have lost an electron). "At the outset, we were studying other methods of erosion and looking for a rippled structure at the edge of our sample after applying this technique, but when we looked at its center we observed a cellular structure that got our attention because of its similarity to many other natural and artificial systems," one of the authors of the study, Mario Castro, UPCO Professor, revealed.

Cellular structures that are more or less disordered can be found in many natural systems: from the hides of animals, such as a giraffe, to bath froth or beer foam, to microscopic fluid convection, basalt column landscapes or diverse crystalline materials. This particular order is also evident in artificial structures and even political ones, such as modern architecture or demarcation of provinces on maps.

"It is of interest to confirm that the same universal laws which regulate the cellular structures in other systems are also regulating at the nanoscale," Rodolfo Cuerno from the UC3M Mathematics Department noted. "Furthermore," he added "it is the first time that the evolution of a system of this kind is reproduced quite well by a single differential equation," which also is applied to other systems. The validity of the model in this study means that the formation of certain self-organized patterns and the dynamics of the foam would be different manifestations of a same principle.

"The results of this study help us to understand how certain material systems evolve in the presence of an external agent, as in this case of ion radiation. In addition, there exists interest of a practical nature because of the importance of the technological applications of silicon as well as for the nanometric dimensions in which the phenomenon unfolds," explained Luis Vázquez, from the Instituto de Ciencia de Materiales (Materials Science Institute) de Madrid at the CSIC.

The experimental observations have been carried out using an atomic force microscope, a machine with great precision. This type of microscope has enormous spatial resolution: it distinguishes variations in height up to a nanometer (the millionth part of a millimeter) and movements on a horizontal plane of up to 10 nanometers.

This research could have further future applications, since in general, methods are being sought to produce structures with nanometric dimensions for diverse uses, according to the scientists: for example, in order to obtain favorable conditions in certain catalytic chemical reactions, to optimize displacement of fluids in circuits on such small scale or in optoelectronics, to generate laser light if certain structures are sufficiently ordered.

####

About Universidad Carlos III de Madrid
The objetive of Scientific Information Bureau of Carlos III University of Madrid is enhancing the transfer of knowledge to the business sector, as well as fomenting public awareness of the results of its research.

The Carlos III University of Madrid is in the Community of Madrid, 15 minutes to the city centre from its nearest campus. The three campuses are located in Getafe and Leganés, to the south of the capital, and in Colmenarejo, to the north-east.

For more information, please click here

Contacts:
Ana María Herrera
+34916246231

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

Chemistry

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

News and information

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Optical Computing

Nanoparticles Break the Symmetry of Light October 6th, 2014

Speed at its limits September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Discoveries

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Photonics/Optics/Lasers

Physicists build reversible laser tractor beam October 20th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE