Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Pseudogap theory puts physicists closer to high temperature superconductors

Right to left: Prof. David Hawthorn, Prof. Roger Melko, and Lauren Hayward. They are pictured in front of  Waterloo’s SHARCNET supercomputer which they used to perform the calculations.
Right to left: Prof. David Hawthorn, Prof. Roger Melko, and Lauren Hayward. They are pictured in front of Waterloo’s SHARCNET supercomputer which they used to perform the calculations.

Abstract:
Physicists are one step closer to developing the world's first room-temperature superconductor thanks to a new theory from the University of Waterloo, Harvard and Perimeter Institute.

Pseudogap theory puts physicists closer to high temperature superconductors

Waterloo, Canada | Posted on March 20th, 2014

The theory explains the transition phase to superconductivity, or "pseudogap" phase, which is one of the last obstacles to developing the next generation of superconductors and one of the major unsolved problems of theoretical condensed matter physics.

Their work was published in this week's issue of the prestigious journal Science.

Superconductivity is the phenomenon where electricity flows with no resistance and no energy loss. Most materials need to be cooled to ultra-low temperatures with liquid helium in order to achieve a superconductive state.

The team includes Professor Roger Melko, Professor David Hawthorn and doctoral student Lauren Hayward from Waterloo's Physics and Astronomy Department, and Harvard Physics Professor Subir Sachev. Roger Melko also holds a Canada Research Chair in Computational Quantum Many-Body Physics.

"This amazing scientific collaboration actually came about by chance over lunch at the Perimeter Institute between Subir and myself," said Hawthorn.

Hawthorn showed Sachdev his latest experimental data on a superconducting material made of Copper and the elements Yttrium and Barium. The material, YBa2Cu3O6+x, had an unexplained temperature dependence. Sachdev had a theory but needed expert help with the complex set of calculations to prove it. That's where Melko and Hayward stepped in and developed the computer code to solve Sachdev's equations.

Melko and Sachdev already knew each other through Perimeter Institute, where Melko is an associate faculty member and Sachdev is a Distinguished Research Visiting Chair.

"The results all came together in a matter of weeks," said Melko. "It really speaks to the synergy we have between Waterloo and Perimeter Institute."

To understand why room-temperature superconductivity has remained so elusive, physicists have turned their sights to the phase that occurs just before superconductivity takes over: the mysterious "pseudogap" phase.

"Understanding the pseudogap is as important as understanding superconductivity itself," said Melko.

The cuprate, YBa2Cu3O6+x, is one of the few materials known to be superconductive at higher temperatures, but scientists are so far unable to achieve superconductivity in this material above -179°C. This new study found that YBa2Cu3O6+x oscillates between two quantum states during the pseudogap, one of which involves charge-density wave fluctuations. These periodic fluctuations in the distribution of the electrical charges are what destabilize the superconducting state above the critical temperature.

Once the material is cooled below the critical temperature, the strength of these fluctuations falls and the superconductivity state takes over.

Superconducting magnets are currently used in MRI machines and complex particle accelerators, but the cost of cooling materials using Helium makes them very expensive. Materials that achieve superconductivity at a higher temperature could unlock the technology for new smart power grids and advanced power storage units.

The group plans to extend their work both theoretically and experimentally to understand more about the fundamental nature of cuprates.

####

About University of Waterloo
In just half a century, the University of Waterloo, located at the heart of Canada's technology hub, has become one of Canada's leading comprehensive universities with 35,000 full- and part-time students in undergraduate and graduate programs. Waterloo, as home to the world's largest post-secondary co-operative education program, embraces its connections to the world and encourages enterprising partnerships in learning, research and discovery. In the next decade, the university is committed to building a better future for Canada and the world by championing innovation and collaboration to create solutions relevant to the needs of today and tomorrow.

For more information, please click here

Contacts:
Nick Manning

519-888-4451
226-929-7627
www.uwaterloo.ca/news

Copyright © University of Waterloo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Physics

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

Harry Atwater and Albert Polman receive the Julius Springer Prize for Applied Physics 2014: Scientists honored for their pioneering achievements in plasmonics and nanophotonics August 8th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Superconductivity

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Discoveries

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Announcements

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Research partnerships

Сalculations with Nanoscale Smart Particles August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE