Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Pseudogap theory puts physicists closer to high temperature superconductors

Right to left: Prof. David Hawthorn, Prof. Roger Melko, and Lauren Hayward. They are pictured in front of  Waterloo’s SHARCNET supercomputer which they used to perform the calculations.
Right to left: Prof. David Hawthorn, Prof. Roger Melko, and Lauren Hayward. They are pictured in front of Waterloo’s SHARCNET supercomputer which they used to perform the calculations.

Abstract:
Physicists are one step closer to developing the world's first room-temperature superconductor thanks to a new theory from the University of Waterloo, Harvard and Perimeter Institute.

Pseudogap theory puts physicists closer to high temperature superconductors

Waterloo, Canada | Posted on March 20th, 2014

The theory explains the transition phase to superconductivity, or "pseudogap" phase, which is one of the last obstacles to developing the next generation of superconductors and one of the major unsolved problems of theoretical condensed matter physics.

Their work was published in this week's issue of the prestigious journal Science.

Superconductivity is the phenomenon where electricity flows with no resistance and no energy loss. Most materials need to be cooled to ultra-low temperatures with liquid helium in order to achieve a superconductive state.

The team includes Professor Roger Melko, Professor David Hawthorn and doctoral student Lauren Hayward from Waterloo's Physics and Astronomy Department, and Harvard Physics Professor Subir Sachev. Roger Melko also holds a Canada Research Chair in Computational Quantum Many-Body Physics.

"This amazing scientific collaboration actually came about by chance over lunch at the Perimeter Institute between Subir and myself," said Hawthorn.

Hawthorn showed Sachdev his latest experimental data on a superconducting material made of Copper and the elements Yttrium and Barium. The material, YBa2Cu3O6+x, had an unexplained temperature dependence. Sachdev had a theory but needed expert help with the complex set of calculations to prove it. That's where Melko and Hayward stepped in and developed the computer code to solve Sachdev's equations.

Melko and Sachdev already knew each other through Perimeter Institute, where Melko is an associate faculty member and Sachdev is a Distinguished Research Visiting Chair.

"The results all came together in a matter of weeks," said Melko. "It really speaks to the synergy we have between Waterloo and Perimeter Institute."

To understand why room-temperature superconductivity has remained so elusive, physicists have turned their sights to the phase that occurs just before superconductivity takes over: the mysterious "pseudogap" phase.

"Understanding the pseudogap is as important as understanding superconductivity itself," said Melko.

The cuprate, YBa2Cu3O6+x, is one of the few materials known to be superconductive at higher temperatures, but scientists are so far unable to achieve superconductivity in this material above -179°C. This new study found that YBa2Cu3O6+x oscillates between two quantum states during the pseudogap, one of which involves charge-density wave fluctuations. These periodic fluctuations in the distribution of the electrical charges are what destabilize the superconducting state above the critical temperature.

Once the material is cooled below the critical temperature, the strength of these fluctuations falls and the superconductivity state takes over.

Superconducting magnets are currently used in MRI machines and complex particle accelerators, but the cost of cooling materials using Helium makes them very expensive. Materials that achieve superconductivity at a higher temperature could unlock the technology for new smart power grids and advanced power storage units.

The group plans to extend their work both theoretically and experimentally to understand more about the fundamental nature of cuprates.

####

About University of Waterloo
In just half a century, the University of Waterloo, located at the heart of Canada's technology hub, has become one of Canada's leading comprehensive universities with 35,000 full- and part-time students in undergraduate and graduate programs. Waterloo, as home to the world's largest post-secondary co-operative education program, embraces its connections to the world and encourages enterprising partnerships in learning, research and discovery. In the next decade, the university is committed to building a better future for Canada and the world by championing innovation and collaboration to create solutions relevant to the needs of today and tomorrow.

For more information, please click here

Contacts:
Nick Manning

519-888-4451
226-929-7627
www.uwaterloo.ca/news

Copyright © University of Waterloo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Superconductivity

Scientists Pinpoint Energy Flowing Through Vibrations in Superconducting Crystals: Interactions between electrons and the atomic structure of high-temperature superconductors impacted by elusive and powerful vibrations May 4th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Physics

Scientists Pinpoint Energy Flowing Through Vibrations in Superconducting Crystals: Interactions between electrons and the atomic structure of high-temperature superconductors impacted by elusive and powerful vibrations May 4th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Understanding gravity: The nanoscale search for extra dimensions: A Japan-US research collaboration involving Osaka University uses high-sensitivity experiments to probe exotic gravitational force March 28th, 2018

Discoveries

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Announcements

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Research partnerships

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project