Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First methodology to analyse nanometer line pattern images

Abstract:
To meet the increasing demand for smaller, faster, and more powerful devices, a continued decrease in the dimensions of active parts of devices is required.

First methodology to analyse nanometer line pattern images

Barcelona, Spain | Posted on March 18th, 2014

Scientists from the Institut Català de Nanociència i Nanotecnologia (Catalan Institute for Nanoscience and Nanotechnology - ICN2) announced pioneering software for line pattern image analysis at the SPIE Advanced Lithography (San Jose, CA; 23 - 27 February 2014). The presented methodology is a unique tool developed to address the gap existent in dimensional metrology of sub-10 nm line patterns. This is a methodology to quantify the critical dimensions and defect density of line arrays in regimes where optical inspection cannot reach. The software has been developed by the ICN2 Phononic and Photonic Nanostructures Group, led by ICREA Professor C. M. Sotomayor Torres, in collaboration with University College Cork (Ireland), led by Professor A. Amann.

Directed self-assembly (DSA) of block copolymers (BCPs), a method already compatible with existing electronic technologies, has gained the attention of the lithography community as a most promising avenue to advance miniaturisation. First-generation DSA is on the verge of entering high-volume manufacturing by successfully increasing sub-20 nm contact hole resolution in a cost-effective manner. DSA for reproducible sub-10 nm pitch sizes is a hot research topic in Asia, Europe, and the Americas.

One of the main challenges for R&D, material suppliers, or manufacturers is specialised metrology for DSA-based lithography. It is here where the method invented by ICN2/UCC is expected to bring decisive advantages in the characterization of nanometer line patterns, one of the key elements in circuit manufacturing. The presented methodology is state-of-the-art, user-friendly, and customizable software successfully addressing this issue, complimentary to conventional optical inspection tools.

This R&D project is in validation stage and is available for development in joint ventures with partners interested in materials, metrology, manufacturing, and applications involving DSA.

Download the software's informative brochure: www.icn.cat/pdf/brochures/bcp-software.pdf

####

About ICN2
ICN2 is a highly specialized and renowned research center. Its research lines focus on the newly discovered physical and chemical properties that arise from the fascinating behavior of matter at the nanoscale. The patrons of ICN2 are the Government of Catalonia (Generalitat), the CSIC, and the Autonomous University of Barcelona (UAB).

The Institute promotes collaboration among scientists from diverse backgrounds (physics, chemistry, biology, engineering) to develop basic and applied research, always seeking interactions with local and global industry. ICN2 also trains researchers in nanotechnology, develops intense activity to facilitate the uptake of nanotechnology in industry, and promotes networking among scientists, engineers, technicians, business people, society, and policy makers.

For more information, please click here

Contacts:
Claudia Delgado Simão, Ph.D.
Post-doctoral Researcher
Phononic and Photonic Nanostructures (P2N) Group
Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Edifici Nanotecnologia ICN2, Campus de la UAB 08193 Bellaterra (Barcelona) SPAIN
Tel.: +34 93 737 16 16

http://www.icn.cat/~p2n/

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Imaging

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Software

Technology Companies Join Forces for TEM Imaging and Analysis August 3rd, 2017

Nanometrics Introduces SpectraProbe Analysis Software: Advanced software and algorithms enhancing Nanometrics metrology fleet capabilities fab-wide July 13th, 2017

Nanometrics Releases NanoDiffract 4: Latest software extends process control capabilities for advanced 3D devices July 11th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Chip Technology

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Announcements

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Tools

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

Events/Classes

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

Thermo Fisher Scientific Showcases Innovations in Electron Microscopy and Spectroscopy at M&M 2017: New analytical technologies improve workflows for life sciences and materials science researchers August 8th, 2017

Nanometrics Announces Upcoming Investor Events August 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project