Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotube composites increase the efficiency of next generation of solar cells

The high degree of control of the method enables production of highly efficient nanotube networks with a very small amount of nanotubes compared to other conventional methods, thereby strongly reducing materials costs.
The high degree of control of the method enables production of highly efficient nanotube networks with a very small amount of nanotubes compared to other conventional methods, thereby strongly reducing materials costs.

Abstract:
Carbon nanotubes are becoming increasingly attractive for photovoltaic solar cells as a replacement to silicon. Researchers at Umeň University in Sweden have discovered that controlled placement of the carbon nanotubes into nano-structures produces a huge boost in electronic performance. Their groundbreaking results are published in the prestigious journal Advanced Materials.

Nanotube composites increase the efficiency of next generation of solar cells

Umeň, Sweden | Posted on March 18th, 2014

Carbon nanotubes, CNTs, are one dimensional nanoscale cylinders made of carbon atoms that possess very unique properties. For example, they have very high tensile strength and exceptional electron mobility, which make them very attractive for the next generation of organic and carbon-based electronic devices.

There is an increasing trend of using carbon based nanostructured materials as components in solar cells. Due to their exceptional properties, carbon nanotubes are expected to enhance the performance of current solar cells through efficient charge transport inside the device. However, in order to obtain the highest performance for electronic applications, the carbon nanotubes must be assembled into a well-ordered network of interconnecting nanotubes. Unfortunately, conventional methods used today are far from optimal which results in low device performance.

In a new study, a team of physicists and chemists at Umeň University have joined forces to produce nano-engineered carbon nanotubes networks with novel properties.

For the first time, the researchers show that carbon nanotubes can be engineered into complex network architectures, and with controlled nano-scale dimensions inside a polymer matrix.

"We have found that the resulting nano networks possess exceptional ability to transport charges, up to 100 million times higher than previously measured carbon nanotube random networks produced by conventional methods," says Dr David Barbero, leader of the project and assistant professor at the Department of Physics at Umeň University.

In a previous study (Applied Physics Letters, Volume 103, Issue 2, 021116 (2013)) the research team of David R. Barbero already demonstrated that nano-engineered networks can be produced onto thin and flexible transparent electrodes that can be used in flexible solar cells. These new results are expected to accelerate the development of next generation of flexible carbon based solar cells, which are both more efficient and less expensive to produce.

Editor: Ingrid S÷derbergh

####

For more information, please click here

Contacts:
David Barbero

46-070-210-7705

Copyright © Umea University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication:

Related News Press

News and information

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020

Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020

Synthesis of organophilic carbon nanodots with multi-band emission from tomato leaves August 21st, 2020

Rescue operations become faster thanks to graphene nanotubes August 20th, 2020

Discoveries

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Announcements

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Energy

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021

Bionic idea boosts lithium-ion extraction January 1st, 2021

Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020

Solar/Photovoltaic

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021

Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020

Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project