Home > Press > Nanotube composites increase the efficiency of next generation of solar cells
![]() |
The high degree of control of the method enables production of highly efficient nanotube networks with a very small amount of nanotubes compared to other conventional methods, thereby strongly reducing materials costs. |
Abstract:
Carbon nanotubes are becoming increasingly attractive for photovoltaic solar cells as a replacement to silicon. Researchers at Umeå University in Sweden have discovered that controlled placement of the carbon nanotubes into nano-structures produces a huge boost in electronic performance. Their groundbreaking results are published in the prestigious journal Advanced Materials.
Carbon nanotubes, CNTs, are one dimensional nanoscale cylinders made of carbon atoms that possess very unique properties. For example, they have very high tensile strength and exceptional electron mobility, which make them very attractive for the next generation of organic and carbon-based electronic devices.
There is an increasing trend of using carbon based nanostructured materials as components in solar cells. Due to their exceptional properties, carbon nanotubes are expected to enhance the performance of current solar cells through efficient charge transport inside the device. However, in order to obtain the highest performance for electronic applications, the carbon nanotubes must be assembled into a well-ordered network of interconnecting nanotubes. Unfortunately, conventional methods used today are far from optimal which results in low device performance.
In a new study, a team of physicists and chemists at Umeå University have joined forces to produce nano-engineered carbon nanotubes networks with novel properties.
For the first time, the researchers show that carbon nanotubes can be engineered into complex network architectures, and with controlled nano-scale dimensions inside a polymer matrix.
"We have found that the resulting nano networks possess exceptional ability to transport charges, up to 100 million times higher than previously measured carbon nanotube random networks produced by conventional methods," says Dr David Barbero, leader of the project and assistant professor at the Department of Physics at Umeå University.
In a previous study (Applied Physics Letters, Volume 103, Issue 2, 021116 (2013)) the research team of David R. Barbero already demonstrated that nano-engineered networks can be produced onto thin and flexible transparent electrodes that can be used in flexible solar cells. These new results are expected to accelerate the development of next generation of flexible carbon based solar cells, which are both more efficient and less expensive to produce.
Editor: Ingrid Söderbergh
####
For more information, please click here
Contacts:
David Barbero
46-070-210-7705
Copyright © Umea University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Discoveries
HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Announcements
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
Energy
Generating power where seawater and river water meet July 22nd, 2022
A novel graphene based NiSe2 nanocrystalline array for efficient hydrogen evolution reaction July 15th, 2022
Solar/Photovoltaic
Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022
Key in increasing efficiency of next-generation solar cell, found in ‘light absorption capacity’! July 1st, 2022
Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |