Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists build thinnest-possible LEDs to be stronger, more energy efficient

U of Washington
This graphical representation shows the layers of the 2-D LED and how it emits light.
U of Washington

This graphical representation shows the layers of the 2-D LED and how it emits light.

Abstract:
Most modern electronics, from flat-screen TVs and smartphones to wearable technologies and computer monitors, use tiny light-emitting diodes, or LEDs. These LEDs are based off of semiconductors that emit light with the movement of electrons. As devices get smaller and faster, there is more demand for such semiconductors that are tinier, stronger and more energy efficient.



In this video, UW researchers demonstrate a technique to isolate a single layer of the material graphene. This simple technique, commonly used by scientists worldwide, can isolate monolayers of many materials.

Scientists build thinnest-possible LEDs to be stronger, more energy efficient

Seattle, WA | Posted on March 10th, 2014

University of Washington scientists have built the thinnest-known LED that can be used as a source of light energy in electronics. The LED is based off of two-dimensional, flexible semiconductors, making it possible to stack or use in much smaller and more diverse applications than current technology allows.

"We are able to make the thinnest-possible LEDs, only three atoms thick yet mechanically strong. Such thin and foldable LEDs are critical for future portable and integrated electronic devices," said Xiaodong Xu, a UW assistant professor in materials science and engineering and in physics.

Xu along with Jason Ross, a UW materials science and engineering graduate student, co-authored a paper about this technology that appeared online March 9 in Nature Nanotechnology.

Most consumer electronics use three-dimensional LEDs, but these are 10 to 20 times thicker than the LEDs being developed by the UW.

"These are 10,000 times smaller than the thickness of a human hair, yet the light they emit can be seen by standard measurement equipment," Ross said. "This is a huge leap of miniaturization of technology, and because it's a semiconductor, you can do almost everything with it that is possible with existing, three-dimensional silicon technologies," Ross said.

The UW's LED is made from flat sheets of the molecular semiconductor known as tungsten diselenide, a member of a group of two-dimensional materials that have been recently identified as the thinnest-known semiconductors. Researchers use regular adhesive tape to extract a single sheet of this material from thick, layered pieces in a method inspired by the 2010 Nobel Prize in Physics awarded to the University of Manchester for isolating one-atom-thick flakes of carbon, called graphene, from a piece of graphite.


In addition to light-emitting applications, this technology could open doors for using light as interconnects to run nano-scale computer chips instead of standard devices that operate off the movement of electrons, or electricity. The latter process creates a lot of heat and wastes power, whereas sending light through a chip to achieve the same purpose would be highly efficient.

"A promising solution is to replace the electrical interconnect with optical ones, which will maintain the high bandwidth but consume less energy," Xu said. "Our work makes it possible to make highly integrated and energy-efficient devices in areas such as lighting, optical communication and nano lasers."

The research team is working on more efficient ways to create these thin LEDs and looking at what happens when two-dimensional materials are stacked in different ways. Additionally, these materials have been shown to react with polarized light in new ways that no other materials can, and researchers also will continue to pursue those applications.

Co-authors are Aaron Jones and David Cobden of the UW; Philip Klement of Justus Liebig University in Germany; Nirmal Ghimire, Jiaqiang Yan and D.G. Mandrus of the University of Tennessee and Oak Ridge National Laboratory; Takashi Taniguchi, Kenji Watanabe and Kenji Kitamura of the National Institute for Materials Science in Japan; and Wang Yao of the University of Hong Kong.

The research is funded by the U.S. Department of Energy, Office of Science, the Research Grant Council of Hong Kong, the University Grant Council of Hong Kong and the Croucher Foundation. Ross is supported by a National Science Foundation graduate fellowship.

Grant numbers: U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0008145); Research Grant Council of Hong Kong (HKU705513P); University Grant Committee (AoE/P-04/08).

####

For more information, please click here

Contacts:
Michelle Ma

206-543-2580

Jason Ross

206-543-2887

Xiaodong Xu

206-543-8444

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Joint international research project leads to a breakthrough in terahertz spectroscopy January 28th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Videos/Movies

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Graphene

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Fullerex launches 2015 edition of the Bulk Graphene Pricing Report January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Optical computing/ Photonic computing

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

Graphene plasmons go ballistic: Graphene combined with the insulting power of boron nitride enables light control in tiny circuits with dramatically reduced energy loss January 12th, 2015

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Discoveries

Joint international research project leads to a breakthrough in terahertz spectroscopy January 28th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Announcements

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Joint international research project leads to a breakthrough in terahertz spectroscopy January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Photonics/Optics/Lasers

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Research partnerships

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE