Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ‘Four!' Heads Up, Wide Use of More Flexible Metallic Glass Coming Your Way: Advances in Glass Alloys Lead to Strength, Flexibility

A piece of metallic glass that has been bent around onto itself with a 1mm radius and glued into place. It would spring back to a flat piece if the glue were removed. Photo, Los Alamos National Laboratory.
A piece of metallic glass that has been bent around onto itself with a 1mm radius and glued into place. It would spring back to a flat piece if the glue were removed. Photo, Los Alamos National Laboratory.

Abstract:
What do some high-end golf clubs and your living room window have in common? The answer is glass, but in the golf clubs' case it's a specialized glass product, called metallic glass, with the ability to be bent considerably and spring back into its original form. Your windows, as you know, aren't quite as forgiving of a sudden impact, and they shatter - they are brittle, as opposed to ductile, or more flexible products. For the golf clubs, however, a new generation of flexible metallic glass puts more bounce back into a golf ball, from the metallic glass' high elasticity. They're not unbreakable, but close. And scientists are working toward even stronger and more elastic glass types which would fail in a ductile fashion instead of shattering.

‘Four!' Heads Up, Wide Use of More Flexible Metallic Glass Coming Your Way: Advances in Glass Alloys Lead to Strength, Flexibility

Los Alamos, NM | Posted on March 4th, 2014

"In glass, localized plastic deformation usually leads to immediate failure," said Seth Imhoff, a Los Alamos National Laboratory materials scientist. "Normally, metal alloys freeze into a collection of crystals in which the atoms line up into very specific patterns. In specially designed metal alloys an amorphous, or random atom arrangement, can be retained in the solid, which can allow us to tailor a wide range of properties such as the ability to be bent severely and spring back into place."

And for scientists, tweaking the shearing characteristics of materials such as glass has important applications well beyond the sporting world, it's a matter of broader impact, aiding such fields as space science, electrical transformers, cell phone cases, and yes, golf clubs, because their mechanical and magnetic properties are highly adjustable.

An international team of scientists from the University of Wisconsin-Madison, Los Alamos National Laboratory, Universitat Autňnoma de Barcelona in Spain, and Tohoku University in Japan are hoping their discoveries will lead to glass that can be both stronger and more ductile.

The way that metallic glass deforms plastically is by the formation of what are called shear bands. Shear banding can occur on a macroscopic scale in granular materials, like during an avalanche or landslide, but in glass the bands are generally 10-20 nanometers wide (~3000 times thinner than a human hair!).

In their paper "Nucleation of Shear Bands in Amorphous Alloys" published this week in the Proceedings of the National Academy of Sciences, these researchers are looking at the initiation of shear-banding events in order to better understand how to control the mechanical properties of these materials.

Once a shear band is formed it travels very quickly across the material and can lead to failure. Therefore the strength is ultimately controlled by how and when they form; so shear banding is termed a "nucleation controlled event." The end goal is to understand this shear band nucleation, or initial formation, behavior so that better properties can be designed.

"We've used an experimental technique called nanoindentation to repeatedly sample the initial formation of shear bands," said Imhoff. "Nanoindentation essentially uses a tiny needle with a very precise shape to push on the surface of a sample in a very controlled way. Even though the force is very small, the tiny tip of the needle concentrates the stress in a very small region until a single shear band is generated in order to relieve some of that stress."

By repeating this process many times scientists sample many local atomic arrangements and their specific critical stress levels. The new experimental evidence provided in this work challenges the current assumption of only a single type of initiation site, or STZ (shear transformation zone).

Identification of multiple types of STZs could lead to new opportunities for controlling the strength and ductility of bulk metallic glasses… oh, and of course this means more durable high-performance golf clubs.

Funding: Research funded in part by the National Science Foundation (DMR-1005334) and Office of Naval Research (N00014-12-1-0569). Additional funding from Grants-in-Aid-S, Global COE for Materials Science, and World Premier International Research Center Initiative for Atoms, Molecules and Materials, the Ministry of Education, Culture, Sports and Science, Japan.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS Corporation for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Nancy Ambrosiano
505.667.0471

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Laboratories

Linking superconductivity and structure May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Materials/Metamaterials

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Sports

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Researchers use nanotechnology to engineer ACL replacements: Researchers created a tri-component, synthetic graft for reconstructing torn anterior cruciate ligaments December 30th, 2014

‘Small’ transformation yields big changes September 16th, 2014

CEA-Leti and CORIMA Team up on Force Sensors Integrated in Cycle Wheels to Measure Rider Power Output June 26th, 2014

Research partnerships

Linking superconductivity and structure May 28th, 2015

How spacetime is built by quantum entanglement: New insight into unification of general relativity and quantum mechanics May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project