Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Electronics based on a 2-D electron gas: A new material could open the door to a new kind of electronics: researchers at the Vienna University of Technology have created a stable two-dimensional electron gas in strontium titanate

This shows the atomic structure of SrTiO3(110).

Credit: TU Vienna
This shows the atomic structure of SrTiO3(110).

Credit: TU Vienna

Abstract:
Usually, microelectronic devices are made of silicon or similar semiconductors. Recently, the electronic properties of metal oxides have become quite interesting. These materials are more complex, yet offer a broader range of possibilities to tune their properties. An important breakthrough has now been achieved at the Vienna University of Technology: a two dimensional electron gas was created in strontium titanate. In a thin layer just below the surface electrons can move freely and occupy different quantum states.

Electronics based on a 2-D electron gas: A new material could open the door to a new kind of electronics: researchers at the Vienna University of Technology have created a stable two-dimensional electron gas in strontium titanate

Vienna, Austria | Posted on March 3rd, 2014

Strontium titanate is not only a potential future alternative to standard semiconductors, it could also exhibit interesting phenomena, such as superconductivity, thermoelectricity or magnetic effects that do not occur in the materials that are used for today's electronic devices.

The Surface Layer and the Inside

This project closely links theoretical calculations and experiments. Zhiming Wang from Professor Ulrike Diebold's research team was the leading experimentalist; some of the experimental work was done at the synchrotron BESSY in Berlin. Zhicheng Zhong from Professor Karsten Held's group studied the material in computer simulations.

Not all of the atoms of strontium titanate are arranged in the same pattern: if the material is cut at a certain angle, the atoms of the surface layer form a structure, which is different from the structure in the bulk of the material. "Inside, every titanium atom has six neighbouring oxygen atoms, whereas the titanium atoms at the surface are only connected to four oxygen atoms each", says Ulrike Diebold. This is the reason for the remarkable chemical stability of the surface. Normally such materials are damaged if they come into contact with water or oxygen.

Migrating Oxygen Atoms

Something remarkable happens when the material is irradiated with high-energy electromagnetic waves: "The radiation can remove oxygen atoms from the surface", Ulrike Diebold explains. Then other oxygen atoms from within the bulk of the material move up to the surface. Inside the material, an oxygen deficiency builds up, as well a surplus of electrons.

"These electrons, located in a two dimensional layer very close to the surface, can move freely. We call this an electron gas", says Karsten Held. There has already been some evidence of two dimensional electron gases in similar materials, but until now the creation of a stable, durable electron gas at a surface has been impossible. The properties of the electrons in the gas can be finely tuned. Depending on the intensity of the radiation, the number of electrons varies. By adding different atoms, the electronic properties can also be changed.

"In solid state physics, the so-called band structure of a material is very important. It describes the relationship between the energy and the momentum of the electrons. The remarkable thing about our surface is that it shows completely different kinds of band structures, depending on the quantum state of the electron", says Karsten Held.

The electron gas in the new material exhibits a multitude of different electronic structures. Some of them could very well be suitable for producing interesting magnetic effects or superconductivity. The promising properties of strontium titanate will now be further investigated. The researchers hope that, by applying external electric fields or by placing additional metal atoms on the surface, the new material could reveal a few more of its secrets.

####

For more information, please click here

Contacts:
Prof. Ulrike Diebold
Institute for Applied Physics
Vienna University of Technology
Wiedner Hauptstraße 8-10, 1040 Wien
+43-1- 58801-13425


Prof. Karsten Held
Institut for Solid State Physics
Vienna University of Technology
Wiedner Hauptstraße 8
T: +43-1-58801-13710


Florian Aigner

43-158-801-41027
Vienna University of Technology

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Superconductivity

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

Exploring superconducting properties of 3-D printed parts: Australian researchers use 3-D printing to create a resonant microwave cavity via an aluminum-silicon alloy that boasts superconductivity when cooled below the critical temperature of aluminum July 20th, 2016

Chip Technology

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Discoveries

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Announcements

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Quantum nanoscience

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

A new spin on reality July 15th, 2016

Physicists couple distant nuclear spins using a single electron: For the first time, researchers at the University of Basel have coupled the nuclear spins of distant atoms using just a single electron July 12th, 2016

Quantum technologies to revolutionize 21st century: Nobel Laureates to discuss impacts at 66th Lindau Meeting July 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic