Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes

Abstract:
CIQUS researchers (Universidade de Santiago de Compostela) obtained hybrid structures with complementary properties of nanotubes and self-assembling cyclic peptide nanotubes.

Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes

Santiago, Spain | Posted on March 1st, 2014

This work, led by CIQUS researchers Juan Granja and Javier Montenegro, describes the production of a hybrid structures composed of carbon nanotube single-walled (SWCNTs) and self-assembling cyclic peptide nanotubes (SCPNs), that can be applied in various areas biology or nanotechnology.

The results have been published in the prestigious Journal of the American Chemical Society, highlighting the complementary and synergistic properties derived from each type of nantotuboestructure.

For one side, the biocompatible nature of the peptide nanotubes would improve, among others, the adaptability of the carbon nanotubes in physiological conditions. Furthermore, the system and the complementary electrical properties are of interest for the preparation of nanometric and electronic devices free of short circuits.

Cyclic peptides self-assemble via hydrogen bonding, forming stacked tubular nanotubes, with complete control of diameter and functionalization.

Thus, by the logic design of cyclic peptide rings, it has been achieved the solubilization of carbon nanotubes in aqueous medium and, reciprocally, the carbon nanotubes increase the chances that the peptide rings interact with each other in a solvent that competes for links hydrogen as water.

The deposition of these nanoscale and complementary structures on different surfaces allows the formation of twin nanotubes having synergistic properties derived from each individual and complementary structure. Thus, for example, the formation of organized networks of peptide nanotubes on surfaces allows the alignment of the carbon nanotubes on a common axis.

Characterization by atomic force microscopy confirms hybrid different electrical properties of each nanotube (peptide: insulator; carbon: conductor) and allows the obtaining of similar insulating coated wire and hybrid nanometer-sized tubes.

Coupling of Carbon and Peptide Nanotubes. J. Montenegro, C. Vázquez-Vázquez, A. Kalinin, K. E. Geckeler, J. R. Granja.

####

For more information, please click here

Contacts:
Fernando Casal
R&D Management

Singular Research Centers Network
Center for Research in Biological Chemistry and Molecular Materials (CIQUS)
Universidade de Santiago de CompostelaCIQUS - C/ Jenaro de la Fuente s/n
15782 Santiago de Compostela - España
Tel. (+34) 881 815 782
(+34) 600 942 443

Copyright © CIQUS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Research Group: Juan Granja

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Self Assembly

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Polymer nanowires that assemble in perpendicular layers could offer route to tinier chip components January 23rd, 2016

Nanodevice, build thyself: Researchers in Germany studied how a multitude of electronic interactions govern the encounter between a molecule called porphine and copper and silver surfaces January 18th, 2016

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic