Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Material Developed by UC San Diego Engineers Could Speed Up Underwater Communications by Orders of Magnitude

Electrical engineers at UC San Diego have demonstrated that artificial materials can significantly improve the speed of optical communications. The team showed that an artificial metamaterial can increase the light density and blink speed of a flourescent light-emitting dye molecule. Image credit: Liu Research Group/UC San Diego
Electrical engineers at UC San Diego have demonstrated that artificial materials can significantly improve the speed of optical communications. The team showed that an artificial metamaterial can increase the light density and blink speed of a flourescent light-emitting dye molecule.

Image credit: Liu Research Group/UC San Diego

Abstract:
University of California, San Diego electrical engineering professor Zhaowei Liu and colleagues have taken the first steps in a project to develop fast-blinking LED systems for underwater optical communications.

Material Developed by UC San Diego Engineers Could Speed Up Underwater Communications by Orders of Magnitude

San Diego, CA | Posted on January 24th, 2014

In a recent article in Nature Nanotechnology, Liu and colleagues show that an artificial metamaterial can increase the light intensity and "blink speed" of a fluorescent light-emitting dye molecule.

The nanopatterned layers of silver and silicon in the new material sped up the molecule's blink rate to 76 times faster than normal, while producing an 80-fold increase in its brightness.

"The major purpose of this program is to develop a better light source for communication purposes," Liu said. "But this is just a first step in the whole story. We have proved that this artificial, manmade material can be designed to enhance light emission and intensity, but the next step will be to apply this on conventional LEDs."

Extreme blinking speed - ultrafast modulation - in blue and green LEDs is a missing link that is necessary for increasing the rate at which information can be sent via optical channels through the open water, such as between ships and submarines, submarines and divers, underwater environmental sensors and unmanned underwater vehicles, or other combinations.

If dramatically improved, optical wireless communications could eventually replace underwater acoustic communications systems for short distance applications. Acoustic communications are limited by slow speed and low data rates and may possibly cause distress to whales, dolphins and other marine life. To do this, they must develop blue and green LED systems that blink one or two orders of magnitude faster than today's blue and green gallium nitride (GaN) based LEDs.

In underwater optical wireless communications systems, data is converted from an electrical signal to optical waves that travel through the water from a light source such as a LED to an optical receiver. Blinking blue and green LEDs are already used to transfer information through the water. (Blue and green LEDs are used because their light is less apt to be absorbed by the water than other colors.)

The metamaterials developed by the researchers are synthetic, with properties not found in nature, and are specially designed to accelerate the light generation process.

So far, it's been difficult to directly convert an electrical signal into an optical signal in LEDs with adequate speed. At the moment, the blink rate for most of these converted signals is less than one gigahertz, a rate slower than the speed of most WiFi signals, Liu said.

The materials are designed to have extremely strong interactions with the light emitters that are specific to the wavelength--or color--of the emissions. In the new report, the researchers used a dye molecule that gives off a yellow-green hue. So the next step will be to pair the materials with the blue and green LEDs.

"The design of the materials may not be the hardest thing," said UC San Diego graduate student Dylan Lu, the lead author of the Nature Nanotechnology paper, who noted that they will work with LEDs that have been manufactured to a specific industry standard. "I think the major challenge, to apply it to LEDs, will be an integration issue."

Liu recently won a grant from the Office of Naval Research (ONR) to develop the fast-blinking blue and green LED systems, which includes a little more than $500,000 over three years.

Along with Electrical and Computer Engineering professors Paul Yu and Eric Fullerton, Liu aims to eventually test ultrafast blinking LED configurations in San Diego's ocean waters.

"We started from advances in fundamental material research, and we want to transfer the knowledge to the LED business," said Liu.

####

For more information, please click here

Contacts:
Catherine Hockmuth

858-822-1359

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Liu Research Group:

More Electrical and Computer Engineering News Via RSS:

Related News Press

News and information

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Display technology/LEDs/SS Lighting/OLEDs

'Quantum dot' technology may help light the future August 19th, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Flexible, biodegradable device can generate power from touch (video) August 12th, 2015

New research may enhance display & LED lighting technology: Large-area integration of quantum dots and photonic crystals produce brighter and more efficient light August 9th, 2015

Wireless/telecommunications/RF/Antennas

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers boost wireless power transfer with magnetic field enhancement July 23rd, 2015

GLOBALFOUNDRIES Launches Industry’s First 22nm FD-SOI Technology Platform: 22FDX offers the best combination of performance, power consumption and cost for IoT, mainstream mobile, RF connectivity, and networking July 13th, 2015

Investigation of Mechanical Behavior of Heterogeneous Nanostructures in Iran July 13th, 2015

Govt.-Legislation/Regulation/Funding/Policy

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Discoveries

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Announcements

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Military

Seeing quantum motion August 30th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

How UEA research could help build computers from DNA August 19th, 2015

Photonics/Optics/Lasers

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic