Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Material Developed by UC San Diego Engineers Could Speed Up Underwater Communications by Orders of Magnitude

Electrical engineers at UC San Diego have demonstrated that artificial materials can significantly improve the speed of optical communications. The team showed that an artificial metamaterial can increase the light density and blink speed of a flourescent light-emitting dye molecule. Image credit: Liu Research Group/UC San Diego
Electrical engineers at UC San Diego have demonstrated that artificial materials can significantly improve the speed of optical communications. The team showed that an artificial metamaterial can increase the light density and blink speed of a flourescent light-emitting dye molecule.

Image credit: Liu Research Group/UC San Diego

Abstract:
University of California, San Diego electrical engineering professor Zhaowei Liu and colleagues have taken the first steps in a project to develop fast-blinking LED systems for underwater optical communications.

Material Developed by UC San Diego Engineers Could Speed Up Underwater Communications by Orders of Magnitude

San Diego, CA | Posted on January 24th, 2014

In a recent article in Nature Nanotechnology, Liu and colleagues show that an artificial metamaterial can increase the light intensity and "blink speed" of a fluorescent light-emitting dye molecule.

The nanopatterned layers of silver and silicon in the new material sped up the molecule's blink rate to 76 times faster than normal, while producing an 80-fold increase in its brightness.

"The major purpose of this program is to develop a better light source for communication purposes," Liu said. "But this is just a first step in the whole story. We have proved that this artificial, manmade material can be designed to enhance light emission and intensity, but the next step will be to apply this on conventional LEDs."

Extreme blinking speed - ultrafast modulation - in blue and green LEDs is a missing link that is necessary for increasing the rate at which information can be sent via optical channels through the open water, such as between ships and submarines, submarines and divers, underwater environmental sensors and unmanned underwater vehicles, or other combinations.

If dramatically improved, optical wireless communications could eventually replace underwater acoustic communications systems for short distance applications. Acoustic communications are limited by slow speed and low data rates and may possibly cause distress to whales, dolphins and other marine life. To do this, they must develop blue and green LED systems that blink one or two orders of magnitude faster than today's blue and green gallium nitride (GaN) based LEDs.

In underwater optical wireless communications systems, data is converted from an electrical signal to optical waves that travel through the water from a light source such as a LED to an optical receiver. Blinking blue and green LEDs are already used to transfer information through the water. (Blue and green LEDs are used because their light is less apt to be absorbed by the water than other colors.)

The metamaterials developed by the researchers are synthetic, with properties not found in nature, and are specially designed to accelerate the light generation process.

So far, it's been difficult to directly convert an electrical signal into an optical signal in LEDs with adequate speed. At the moment, the blink rate for most of these converted signals is less than one gigahertz, a rate slower than the speed of most WiFi signals, Liu said.

The materials are designed to have extremely strong interactions with the light emitters that are specific to the wavelength--or color--of the emissions. In the new report, the researchers used a dye molecule that gives off a yellow-green hue. So the next step will be to pair the materials with the blue and green LEDs.

"The design of the materials may not be the hardest thing," said UC San Diego graduate student Dylan Lu, the lead author of the Nature Nanotechnology paper, who noted that they will work with LEDs that have been manufactured to a specific industry standard. "I think the major challenge, to apply it to LEDs, will be an integration issue."

Liu recently won a grant from the Office of Naval Research (ONR) to develop the fast-blinking blue and green LED systems, which includes a little more than $500,000 over three years.

Along with Electrical and Computer Engineering professors Paul Yu and Eric Fullerton, Liu aims to eventually test ultrafast blinking LED configurations in San Diego's ocean waters.

"We started from advances in fundamental material research, and we want to transfer the knowledge to the LED business," said Liu.

####

For more information, please click here

Contacts:
Catherine Hockmuth

858-822-1359

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Liu Research Group:

More Electrical and Computer Engineering News Via RSS:

Related News Press

News and information

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Wireless/telecommunications/RF/Antennas/Microwaves

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Discoveries

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Announcements

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Military

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

Photonics/Optics/Lasers

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project