Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Inverse design: New route to design a practical invisibility cloak

Abstract:
With the emergence of metamaterials and transformation optics in the past few years, invisibility has become a scientific possibility that has attracted sustainable research interest. Recently, a review paper, entitled "Invisibility cloak from forward design to inverse design", published in SCIENCE CHINA Information Sciences, 2013, Vol. 56, reviewed design methodologies and experimental developments of the invisibility cloak from a practical perspective. The recent transition from a forward cloaking design to inverse cloaking design was also addressed. The paper pointed out that the combination of "forward designs" and "inverse designs" rather than using a single cloaking strategy is very likely to make invisibility cloaks far more realistic.

Inverse design: New route to design a practical invisibility cloak

Beijing, China | Posted on January 7th, 2014

There are three popular design methodologies: the use of transformation optics, conformal mapping, and scattering cancellation. The key point of cloaking techniques is to use materials with specific constitutive parameters and refractive index. A competent candidate is a metamaterial, which can be realized with a collection of artificial "atoms" with subwavelength size and spacing. As artificial "atoms" can be tuned, electromagnetic properties of metamaterials can be engineered almost at will.

Although these three design methods differ sharply in specific means and were developed almost independently without overlap, they share the same goal of reducing the total scattering cross section to a minimum. The three invisibility strategies can be categorized as "forward designs", where the properties of the cloak can be worked out only after completing the design process. From a perspective of experimental demonstration, the practical development of an invisibility cloak based on forward design has several bottlenecks.

The paper focused on the review of an alternative target-oriented invisibility strategy, which is referred to as an "inverse design" and profoundly different from the forward design. From a practical point of view and with reverse thinking, the inverse design allows the possibility of integrating the technical advantages of forward strategies; e.g., (i) the central concept of invisibility is to minimize the total scattering cross section, (ii) anisotropic materials ensure invisibility without violating the uniqueness theorem of the inverse problem, and (iii) non-superluminal propagation provides cloaking performance with a relatively broad bandwidth. With these advantages, the backward cloaking strategy may eventually be implemented for a practical large-scale freestanding cloak in free space with relatively broad bandwidth.

Because a target-oriented approach is able to combine all the significant properties, inverse designs integrating desired properties might provide an alternative to current cloaking technology and solve the bottlenecks of individual strategies.

###

This research is sponsored by the National Natural Science Foundation of China (Grant Nos. 61322501, 61275183, 60990320, 60990322), Foundation for National Excellent Doctoral Dissertation of China (Grant No. 200950), Fundamental Research Funds for the Central Universities (Grant No. 2011QNA5020), Chinese Scholarship Council Foundation (Grant No. 2011833070), and Program for New Century Excellent Talents in University (Grant No. NCET-12-0489).

####

About Science China Press
Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

For more information, please click here

Contacts:
YAN Bei

86-106-400-8316

Corresponing author:
CHEN HongSheng

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Xu S, Wang Y, Zhang B L, Chen H S. Invisibility cloaks from forward design to inverse design. Sci China Inf Sci, 2013, 56(12): 120408(11):

Related News Press

News and information

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Discoveries

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Materials/Metamaterials

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

Announcements

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Military

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE