Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Inverse design: New route to design a practical invisibility cloak

Abstract:
With the emergence of metamaterials and transformation optics in the past few years, invisibility has become a scientific possibility that has attracted sustainable research interest. Recently, a review paper, entitled "Invisibility cloak from forward design to inverse design", published in SCIENCE CHINA Information Sciences, 2013, Vol. 56, reviewed design methodologies and experimental developments of the invisibility cloak from a practical perspective. The recent transition from a forward cloaking design to inverse cloaking design was also addressed. The paper pointed out that the combination of "forward designs" and "inverse designs" rather than using a single cloaking strategy is very likely to make invisibility cloaks far more realistic.

Inverse design: New route to design a practical invisibility cloak

Beijing, China | Posted on January 7th, 2014

There are three popular design methodologies: the use of transformation optics, conformal mapping, and scattering cancellation. The key point of cloaking techniques is to use materials with specific constitutive parameters and refractive index. A competent candidate is a metamaterial, which can be realized with a collection of artificial "atoms" with subwavelength size and spacing. As artificial "atoms" can be tuned, electromagnetic properties of metamaterials can be engineered almost at will.

Although these three design methods differ sharply in specific means and were developed almost independently without overlap, they share the same goal of reducing the total scattering cross section to a minimum. The three invisibility strategies can be categorized as "forward designs", where the properties of the cloak can be worked out only after completing the design process. From a perspective of experimental demonstration, the practical development of an invisibility cloak based on forward design has several bottlenecks.

The paper focused on the review of an alternative target-oriented invisibility strategy, which is referred to as an "inverse design" and profoundly different from the forward design. From a practical point of view and with reverse thinking, the inverse design allows the possibility of integrating the technical advantages of forward strategies; e.g., (i) the central concept of invisibility is to minimize the total scattering cross section, (ii) anisotropic materials ensure invisibility without violating the uniqueness theorem of the inverse problem, and (iii) non-superluminal propagation provides cloaking performance with a relatively broad bandwidth. With these advantages, the backward cloaking strategy may eventually be implemented for a practical large-scale freestanding cloak in free space with relatively broad bandwidth.

Because a target-oriented approach is able to combine all the significant properties, inverse designs integrating desired properties might provide an alternative to current cloaking technology and solve the bottlenecks of individual strategies.

###

This research is sponsored by the National Natural Science Foundation of China (Grant Nos. 61322501, 61275183, 60990320, 60990322), Foundation for National Excellent Doctoral Dissertation of China (Grant No. 200950), Fundamental Research Funds for the Central Universities (Grant No. 2011QNA5020), Chinese Scholarship Council Foundation (Grant No. 2011833070), and Program for New Century Excellent Talents in University (Grant No. NCET-12-0489).

####

About Science China Press
Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

For more information, please click here

Contacts:
YAN Bei

86-106-400-8316

Corresponing author:
CHEN HongSheng

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Xu S, Wang Y, Zhang B L, Chen H S. Invisibility cloaks from forward design to inverse design. Sci China Inf Sci, 2013, 56(12): 120408(11):

Related News Press

News and information

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Discoveries

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Materials/Metamaterials

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Military

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic