Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The analogue of a tsunami for telecommunication

Abstract:
Development of electronics and communication requires a hardware base capable for increasingly larger precision, ergonomics and throughput. For communication and GPS-navigation satellites, it is of great importance to reduce the payload mass as well as to ensure the signal stability. Last year, researchers from the Moscow State University (MSU) together with their Swiss colleagues performed a study that can induce certain improvements in this direction. The scientists demonstrated (this paper was published in Nature Photonics) that the primary source of noise in microresonator based optical frequency combs (broad spectra composed of a large number of equidistant narrow emission lines) is related to non-linear harmonic generation mechanisms rather that by fundamental physical limitations and in principle reducible.

The analogue of a tsunami for telecommunication

Moscow, Russia | Posted on December 23rd, 2013

On December 22st, a new publication in Nature Photonics is appearing where they extend their results. Michael Gorodetsky, one of the co-authors of this paper, professor of the Physical Faculty of MSU affiliated also in the Russian Quantum Centre in Skolkovo, says that the study contains at least three important results: scientists found a technique to generate stable femtosecond (duration of the order of 10-15 seconds) pulses, optical combs and microwave signals.

Physicists used a microresonator (in this particular case, a millimeter-scale magnesium fluorite disk was used, where whispering-gallery electromagnetic oscillations may be excited, propagating along the circumference of the the resonator) to convert continuous laser emission into periodic pulses of extremely short duration. The best known analogous devices are mode-locked lasers that generating femtosecond, high-intensity pulses. Applications of these lasers range from analysis of chemical reactions at ultra-short timescales to eye-surgery.

"In mode-locked femtosecond lasers complex optical devices, media and special mirrors are normally used. However we succeeded in obtaining stable pulses just in passive optical resonator using its own non-linearity," -- Gorodetsky says. This allows, in future, to decrease drastically the size of the device.

The short pulses generated in the microresonator are in fact what is known as optical solitons (soliton is a stable, shape-conserving localized wave packet propagating in a non-linear medium like a quasiparticle; an example of a soliton existing in nature is a tsunami wave). "One can generate a single stable soliton circulating inside a microresonator. In the output optical fiber, one can obtain a periodic series of pulses with a period corresponding to a round trip time of the soliton." -- Gorodetsky explains.

Such pulses last for 100-200 femtoseconds, but the authors are sure that much shorter solitons are achievable. They suggest that their discovery allows to construct a new generation of compact, stable and cheap optical pulse generators working in the regimes unachievable with other techniques. In the spectral domain, these pulses correspond to the so-called optical frequency "combs" that revolutionized metrology and spectroscopy and brought to those who developed the method a Nobel Prize in physics in 2005 ( American John Hall and German Theodor Haensch received the Prize "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique"). Currently existing comb generators are much larger and more massive.

At the same time, as the scientists show, a signal generated by such a comb on a photodetectors a high-frequency microwave signal with very low phase noise level. Ultra-low-noise microwave generators are extremely important in modern technology; they are used in metrology, radiolocation, telecommunication hardware, including satellite communications. Authors note that their results are critical for such applications as broadband spectroscopy, telecommunications, and astronomy.

####

For more information, please click here

Contacts:
Ilya Usov

Copyright © Lomonosov Moscow State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Wireless/telecommunications/RF/Antennas/Microwaves

Method improves semiconductor fiber optics, paves way for developing devices April 16th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

Leti Announces EU/South Korean Project for World’s First 5G-system Prototype: Coinciding with the 2018 Winter Games in PyeongChang, Korea, Prototype Will Be First Time State-of-the-art Terrestrial Wireless Communication Is Seamlessly Combined with Disruptive Satellite Communicati April 4th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Discoveries

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Announcements

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Aerospace/Space

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Photonics/Optics/Lasers

Method improves semiconductor fiber optics, paves way for developing devices April 16th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project