Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The analogue of a tsunami for telecommunication

Abstract:
Development of electronics and communication requires a hardware base capable for increasingly larger precision, ergonomics and throughput. For communication and GPS-navigation satellites, it is of great importance to reduce the payload mass as well as to ensure the signal stability. Last year, researchers from the Moscow State University (MSU) together with their Swiss colleagues performed a study that can induce certain improvements in this direction. The scientists demonstrated (this paper was published in Nature Photonics) that the primary source of noise in microresonator based optical frequency combs (broad spectra composed of a large number of equidistant narrow emission lines) is related to non-linear harmonic generation mechanisms rather that by fundamental physical limitations and in principle reducible.

The analogue of a tsunami for telecommunication

Moscow, Russia | Posted on December 23rd, 2013

On December 22st, a new publication in Nature Photonics is appearing where they extend their results. Michael Gorodetsky, one of the co-authors of this paper, professor of the Physical Faculty of MSU affiliated also in the Russian Quantum Centre in Skolkovo, says that the study contains at least three important results: scientists found a technique to generate stable femtosecond (duration of the order of 10-15 seconds) pulses, optical combs and microwave signals.

Physicists used a microresonator (in this particular case, a millimeter-scale magnesium fluorite disk was used, where whispering-gallery electromagnetic oscillations may be excited, propagating along the circumference of the the resonator) to convert continuous laser emission into periodic pulses of extremely short duration. The best known analogous devices are mode-locked lasers that generating femtosecond, high-intensity pulses. Applications of these lasers range from analysis of chemical reactions at ultra-short timescales to eye-surgery.

"In mode-locked femtosecond lasers complex optical devices, media and special mirrors are normally used. However we succeeded in obtaining stable pulses just in passive optical resonator using its own non-linearity," -- Gorodetsky says. This allows, in future, to decrease drastically the size of the device.

The short pulses generated in the microresonator are in fact what is known as optical solitons (soliton is a stable, shape-conserving localized wave packet propagating in a non-linear medium like a quasiparticle; an example of a soliton existing in nature is a tsunami wave). "One can generate a single stable soliton circulating inside a microresonator. In the output optical fiber, one can obtain a periodic series of pulses with a period corresponding to a round trip time of the soliton." -- Gorodetsky explains.

Such pulses last for 100-200 femtoseconds, but the authors are sure that much shorter solitons are achievable. They suggest that their discovery allows to construct a new generation of compact, stable and cheap optical pulse generators working in the regimes unachievable with other techniques. In the spectral domain, these pulses correspond to the so-called optical frequency "combs" that revolutionized metrology and spectroscopy and brought to those who developed the method a Nobel Prize in physics in 2005 ( American John Hall and German Theodor Haensch received the Prize "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique"). Currently existing comb generators are much larger and more massive.

At the same time, as the scientists show, a signal generated by such a comb on a photodetectors a high-frequency microwave signal with very low phase noise level. Ultra-low-noise microwave generators are extremely important in modern technology; they are used in metrology, radiolocation, telecommunication hardware, including satellite communications. Authors note that their results are critical for such applications as broadband spectroscopy, telecommunications, and astronomy.

####

For more information, please click here

Contacts:
Ilya Usov

Copyright © Lomonosov Moscow State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Wireless/telecommunications/RF/Antennas/Microwaves

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Discoveries

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Announcements

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Aerospace/Space

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Teachers in Space, Inc. wins Dream Project contest January 9th, 2018

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Photonics/Optics/Lasers

Researchers use sound waves to advance optical communication January 22nd, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project