Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New, Effective Method Presented for Investigation of Buckling Behavior of Carbon Nanotubes

Abstract:
Results of studies carried out by Iranian researchers from Gilan University led to the presentation of a reliable and precise mathematical method of studying mechanical behavior of carbon nanotubes, which is independent from Young's modulus and thickness of nanotubes.

New, Effective Method Presented for Investigation of Buckling Behavior of Carbon Nanotubes

Tehran, Iran | Posted on December 19th, 2013

The presented method can help the designing of products based on carbon nanotubes. Carbon nanotubes are among the most important major parts in the production of nanoelectro-mechanical devices due to their unique properties. When a thin structure such as carbon nanotube used in a nanoelectro-mechanical system is subjected to pressure load, a type of instability called buckling appears in the structure. Therefore, it is very important to study their mechanical behavior.

Results showed that continuous classic models predict the critical load higher than the actual amount. As the scale factor increases, critical load decreases in the nanotube. It means the toughness of nanotubes decreases taking into account the effects of scale. The effect of geometry on the stability of nanotube was studied too. It was shown that when the geometric parameter of the ratio of length to diameter increases, or in other words, when the nanotube becomes narrower, scale down has less effects on the critical load due to the high length of the tube in comparison with its internal characteristic length such as bond length. It was also observed that wave number had a great effect on the importance of scale effects on the stability of nanotube.

The researchers will continue the research and they will use the presented method in this research to analyze other mechanical phenomena, including vibrations and flexural behavior in other nanostructures such as nanosheets and nanocones.

Results of the research have been published in details in Composite Structures, vol. 100, January 2013, pp. 323-331. This article is considered as one of the top articles approved by Iran Nanotechnology Initiative Council.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Nanotubes that build themselves April 14th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project