Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Alzheimer-substance may be the nanomaterial of tomorrow

Piotr Hanczyc created artificial amyloids in the laboratory. Photo: Mats Tiborn
Piotr Hanczyc created artificial amyloids in the laboratory.

Photo: Mats Tiborn

Abstract:
It causes brain diseases like Alzheimer's, Parkinson's and Creutzfeldt-Jakob's disease. It is also hard and rigid as steel. Now research at Chalmers University of Technology shows that the amyloid protein carries unique characteristics that may lead to the development of new composite materials for nano processors and data storage of tomorrow and even make objects invisible.

Alzheimer-substance may be the nanomaterial of tomorrow

Gothenburg, Sweden | Posted on December 16th, 2013

Piotr Hanczyc, PhD student at the department of Chemical and Biological Engineering, shows in an article in Nature Photonics, that the amyloid, a very dense aggregate of protein that causes brain diseases like Alzheimer's and Parkinson's, carries unique characteristics. Unlike well-functioning protein the amyloid reacts upon multi photon laser irradiation. This laser may in the future possibly be used for detection of amyloids inside a human brain. This discovery is in itself a breakthrough.

- But you can also create these aggregates in an artificial way in a laboratory and in combination with other materials create unique characteristics, Piotr Hanczyc says.

The amyloid aggregates are as hard and rigid as steel. The difference is that steel is much heavier and has defined material properties whereas amyloids can be tuned for desired purpose. By attaching a material's molecules to the dense amyloid its characteristics change. This has been known for more than ten years and is already used by scientists.

- What hasn't been known is that the amyloids react to multi-photon irradiation and this opens up new possibilities to also change the nature of the material attached to the amyloids, Piotr Hanczyc says.

The amyloids are shaped like discs densely piled upon each other. When a material gets merged with these discs its molecules end up so densely and regularly that they can communicate and exchange information. This means totally new possibilities to change a material's characteristics.

Multi-photon tests on materials tied to amyloids are yet to be performed, but Piotr sees an opportunity for cooperation with Chalmers material science researchers interested for example in solar cell technology.

And though it may still be science fiction, he also considers that one day scientists may use the material properties of amyloid fibrils in the research of invisible metamaterials.

- An object's ability to reflect light could be altered so that what's behind it gets reflected instead of the object itself, in principle changing the index of light refraction, kind of like when light hits the surface of water, Piotr Hanczyc says.

Text and photo: Mats Tiborn

####

For more information, please click here

Contacts:
Johanna Wilde

46-317-722-029

Copyright © Chalmers University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download abstract:

Related News Press

News and information

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Chip Technology

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Memory Technology

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

A single-atom magnet breaks new ground for future data storage April 15th, 2016

Discoveries

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Materials/Metamaterials

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Announcements

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Military

Doubling down on Schrödinger's cat May 27th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Nanobiotechnology

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic