Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bruker Introduces High-Performance Opterra™ Multipoint Scanning Confocal Microscope: Opterra Offers Superior Integration of Confocal Microscopy and Photoactivation for Biology Applications

Abstract:
Today at the 2013 American Society for Cell Biology Annual Meeting, Bruker introduced the Opterra Multipoint Scanning Confocal Microscope, which sets a new standard for integration of confocal imaging with photoactivation. The new Opterra microscope utilizes a number of innovative features to obtain the speed of wide-field imaging and the resolution of traditional confocal systems while minimizing phototoxicity, making it an ideal solution for gentle and fast confocal imaging of live cell preparations. A seven-position pinhole/slit aperture allows the Opterra to be optimized for varying objective lens magnifications that results in the ability to image deeper into tissue versus conventional disk scanning confocal microscopes.

Bruker Introduces High-Performance Opterra™ Multipoint Scanning Confocal Microscope: Opterra Offers Superior Integration of Confocal Microscopy and Photoactivation for Biology Applications

New Orleans, LA | Posted on December 16th, 2013

"The Opterra has proven to be a major advance in terms of rapid, time-based volumetric imaging," said Dr. Mario De Bono, Medical Research Council Group Leader at the Laboratory of Molecular Biology, Cambridge University, UK. "The speed of the system, coupled with its sensitivity and resolution has significantly enhanced our ability to visualize neural activity in 3D in C. elegans at speeds that were previously not possible. The ability to change pinhole size is great, as it allows us to match the imaging setup with the specimen."

"Our new Opterra provides a flexible optical workstation for cell biologists to perform confocal imaging of live cells and small organisms with simultaneous point and area scanning for photoactivation and photoablation," explained Mike Szulczewski, Vice President and General Manager of Bruker's Fluorescence Microscopy business. "The tight integration of optical imaging with optical stimulation techniques enables investigators to take full advantage of today's imaging and photochemical probe technologies."

About Opterra

The Opterra Multipoint Scanning Confocal Microscope is based on Bruker's patented swept-field imaging scanner. This scanner allows high-speed confocal imaging of live cell and small organism preparations at resolutions comparable to conventional point scanners, but with minimal phototoxicty. Opterra includes a second scanner for photo- activation/bleaching/ablation, which can operate simultaneously with imaging. The photoactivation scanner can be coupled to both visible and multiphoton lasers, thus allowing the use of the full range of photo-activatable molecules and photochemical techniques available to life science researchers. In the case of multiphoton lasers, this provides precise three-dimensional control over photoactivation. The applications addressed by Opterra include response to DNA damage, kinetics of photoactivatable fluorescent proteins, fluorescence recovery after photo-bleaching (FRAP), response to local stimulation of channel proteins, and response to cell membrane damage. Bruker's Prairie View 5.0 software provides an intuitive interface with a rich environment for defining image acquisition and photoactivation protocols.

####

About Bruker Corporation
Bruker Corporation is a leading provider of high-performance scientific instruments and solutions for molecular and materials research, as well as for industrial and applied analysis.

For more information, please click here

Contacts:
Stephen Hopkins, Marketing Communications
Bruker Nano Surfaces Division
3400 East Britannia Drive, Suite 150, Tucson, AZ 85706
T: +1 (520) 741-1044 x1022

Copyright © Bruker Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Events/Classes

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Nanomechanics to Host High-Speed Nanoindentation Webinar June 21: Leading nanomechanical technology provider will host educational webinar focused on high-speed nanoindentation and mechanical properties mapping June 12th, 2017

Nanobiotix's promising data from Phase I/II head and neck cancer trial presented at ASCO June 5th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project