Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Eulitha unveils new photolithography system “Phabler 100” for photonic patterning

Abstract:
Eulitha AG, A Swiss based company specializing in novel nano lithography technologies, today announced the availability of a new photo-lithography system PhableR 100 for printing high resolution nano-structures, especially for research and development applications as well as pilot and low-volume production use. The system particularly targets the production of periodic patterns such as gratings and photonic crystals required in optics and photonics.

Eulitha unveils new photolithography system “Phabler 100” for photonic patterning

Villigen, Switzerland | Posted on December 12th, 2013

The PhablerR 100 system is based on the proprietary PHABLE (short for Photonics Enabler) photolithographic technology developed by Eulitha AG, which makes it possible to print high-resolution structures in a non-contact, proximity photolithography system. The resolution obtained with the "PhableR 100" is essentially the same as what is obtainable from a DUV projection lithography system, but without the complex and expensive optics and mechanics of such a system. For example, linear gratings with a half-pitch of 150nm can be printed with high uniformity with the new system. As an added advantage, the practically unlimited depth of focus of the image formed by the PhableR 100 system means that the high-resolution patterns can be printed with high uniformity even onto non-flat substrates, which are commonly encountered in photonics applications.

The PhableR 100 system can expose substrates with diameters up to 100mm using industry standard chrome-on-glass or phase-shifting masks. The mask and the substrate are loaded manually onto the system and the exposure process is controlled by an onboard computer. Standard i-line photoresists, both positive and negative tone, which are available from common vendors, can be used. Linear or curved gratings, 2D photonic-crystal type patterns with hexagonal or square symmetry can be printed with feature periods less than 300nm. The system may also be used like a standard mask-aligner in either proximity or contact mode to print micron-scale structures. Targeted applications include research and development projects in photonics, fabrication of gratings for optical diffraction and spectroscopy, light extraction patterns on LEDs, patterned sapphire substrates and color filters.

Harun Solak, CEO of Eulitha AG stated "we are proud to introduce a solution that will enable our customers to perform high resolution photolithography with a low-cost system for the first time. This equipment is a result of a long-term development effort at both the Paul Scherrer Institut and Eulitha." The system is available for immediate demonstration at the Eulitha site in Switzerland. The PhableR 100 system will be presented at the 13th International Nanotechnology Exhibition which will take place between, January 29-21, 2013 in Tokyo, Japan.

####

About Eulitha AG
Eulitha AG is a spin-off company of the Paul Scherrer Institute, Switzerland. It specializes in the development of lithographic technologies for applications in photonics, biotech. It produces and markets nano-patterned samples and templates using its own PHABLE tools and state-of-the-art e-beam lithography systems. PHABLE is the brand name of its proprietary photolithography platform, which includes exposure tools and wafer patterning services.

For more information, please click here

Contacts:
Harun H. Solak
CEO
Tel: +41 56 310 4279


Rene Wilde
Sales Director
Tel: +41 56 281 2154

Copyright © Eulitha AG

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Tools

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Events/Classes

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic