Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Countdown to zero: New 'zero-dimensional' carbon nanotube may lead to superthin electronics and synt

Abstract:
Synthetic, man-made cells and ultrathin electronics built from a new form of "zero-dimensional" carbon nanotube may be possible through research at the University of Pittsburgh Swanson School of Engineering. The research, ""Zero-Dimensional" Single-Walled Carbon Nanotubes," was published in the journal Angewandte Chemie.

Countdown to zero: New 'zero-dimensional' carbon nanotube may lead to superthin electronics and synt

Pittsburgh, PA | Posted on December 11th, 2013

Principal investigators are Steven R. Little, PhD, associate professor, CNG Faculty Fellow and Chair of the Department of Chemical and Petroleum Engineering; and Anna C. Balazs, PhD, the Distinguished Robert v. d. Luft Professor of Chemical and Petroleum Engineering.

Co-investigators include Riccardo Gottardi, PhD, Ri.MED Foundation Fellow, whose research focuses on nanotechnology and biomedical engineering; Alexander Star, PhD, associate professor of chemistry; Bhaskar Godugu, PhD, research assistant professor and director of Pitt's mass spectrometry facility; Susheng Tan, PhD, research assistant professor; postdoctoral researchers Yanan Chen, PhD and Kaladhar Kamalasanan, PhD; and Sam Rothstein, PhD, CSO and co-founder of Qrono Inc.

"Since its discovery, carbon nanotubes have held the promise to revolutionize the field of electronics, material science and even medicine," says Dr. Little. "Zero-dimensional carbon nanotubes present the possibility to build ultrathin, superfast electronic devices, far superior to the best existing ones and it could be possible to build strong and ultralight cars, bridges, and airplanes."

One of the most difficult hurdles is processing the carbon nanotubes into smaller forms. However, previous research at Pitt has managed to cut the carbon nanotubes into the smallest dimensions ever to overcome this problem.

"We have confirmed that these shorter nanotubes are more dispersible and potentially easier to process for industrial as well as biomedical application, and could even constitute the building blocks for the creation of synthetic cells," says Dr. Gottardi.

The organization of the atoms within nanotubes makes them particularly interesting materials to work with. However, they are barely soluble, making industrial processing difficult. One aspect of the team's research will focus on creating more soluble and therefore more usable carbon nanotubes. These shorter nanotubes have the same dimensions as many proteins that compose the basic machinery of living cells, presenting the potential for cell or protein-level biomedical imaging, protein or nucleic acid vaccination carriers, drug delivery vehicles, or even components of synthetic cells.

Overall, the project is aimed at developing and working with these more dispersible carbon nanotubes with the aim of making them easier to process. The creation of the smaller nanotubes is the first step toward reaching this goal.

####

For more information, please click here

Contacts:
Joe Miksch

412-624-4358

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Imaging

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Synthetic Biology

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Discoveries

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project