Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UNL-led team finds less is more with adding graphene to nanofibers

An illustration of the UNL team's research is featured in one of the frontispieces of the Dec. 10 issue of Advanced Functional Materials.
An illustration of the UNL team's research is featured in one of the frontispieces of the Dec. 10 issue of Advanced Functional Materials.

Abstract:
Figuring that if some is good, more must be better, researchers have been trying to pack more graphene, a supermaterial, into structural composites. Collaborative research led by University of Nebraska-Lincoln materials engineers discovered that, in this case, less is more.

UNL-led team finds less is more with adding graphene to nanofibers

Lincoln, NE | Posted on December 11th, 2013

The team, led by Yuris Dzenis, McBroom professor of mechanical and materials engineering and a member of UNL's Nebraska Center for Materials and Nanoscience, learned that using a small amount of graphene oxide as a template improves carbon nanomaterials which, in turn, promises to improve composite materials. Composites are used in everything from airplanes to bicycles and golf clubs.

Graphene is a one-atom thick layer of carbon with a crystalline structure that makes it exceptionally strong and an excellent heat and electrical conductor. It was the subject of research that earned the 2010 Nobel Prize in Physics.

UNL engineers collaborated with researchers from Northwestern University and Materials and Electrochemical Research Corp. of Tucson, Ariz., on this study. The UNL team developed a process to incorporate graphene oxide nanoparticles as a template to guide the formation and orientation of continuous carbon nanofibers, which should improve the fiber's properties. That process involves crumpling the graphene, like crumpling a sheet of paper, in a way that improves graphene as a templating and orientation agent. Only small amounts of crumpled graphene nanoparticles are needed. A group led by chemist SonBinh Nguyen of Northwestern synthesized the graphene oxide.

"Many people are trying to put as much graphene as possible into fibers," Dzenis said, adding that it is difficult to do. "But we did the unconventional thing: We used very small quantities followed by carbonization."

The resulting carbon nanofiber structure has an orientation similar to fibers with demonstrated enhanced strength and other properties, Dzenis said. He and his colleagues are now testing their graphene-based nanofibers for these enhanced properties as well as improving the technique.

The method is promising, he said. It could lower the cost of making composites significantly because it requires only small quantities of expensive nanoparticles and uses an inexpensive nanofiber manufacturing process, which was developed at UNL.

"All of this has potential for high-performance but, at the same time, low-cost carbon nanofibers," Dzenis said.

The team reported its findings in the Dec. 10 issue of Advanced Functional Materials. Co-authors are UNL mechanical and materials engineering colleagues Dimitry Papkov and Alexander Goponenko; facilities specialist Xing-Zhong Li of the Nebraska Center for Materials and Nanoscience; Owen C. Compton, Zhi An and SonBinh T. Nguyen of Northwestern; and Alexander Moravsky of Materials and Electrochemical Research Corp.

This research was funded by grants from the U.S. Army Research Office Multidisciplinary University Research Initiative, Air Force Office of Scientific Research and the National Science Foundation.

Writer: Gillian Klucas, Research and Economic Development

####

For more information, please click here

Contacts:
Yuris Dzenis
Professor
Mechanical and Materials Engineering
phone: 402-472-0713

Copyright © University of Nebraska–Lincoln

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project