Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > KAIST developed the biotemplated design of piezoelectric energy harvesting device

First row: Schemes of each step to explain biotemplated nanogenerator fabrication by using genetically engineered virus. Second row: Electron microscopy of each step in biotemplated synthetic processes and digital photograph of the flexible biotemplated nanogenerator. Right inset shows the driven LED optical fibers by the energy harvester.

Credit: KAIST
First row: Schemes of each step to explain biotemplated nanogenerator fabrication by using genetically engineered virus. Second row: Electron microscopy of each step in biotemplated synthetic processes and digital photograph of the flexible biotemplated nanogenerator. Right inset shows the driven LED optical fibers by the energy harvester.

Credit: KAIST

Abstract:
A research team led by Professor Keon Jae Lee and Professor Yoon Sung Nam from the Department of Materials Science and Engineering at KAIST has developed the biotemplated design of flexible piezoelectric energy harvesting device, called "nanogenerator."

KAIST developed the biotemplated design of piezoelectric energy harvesting device

Ulsan, Korea | Posted on December 3rd, 2013

Nature has its own capabilities to spontaneously synthesize and self-assemble universal materials with sophisticated architectures such as shells, sea sponges, and bone minerals. For instance, the natural sea shell, consisting of calcium carbonate (CaCO3), is very rigid and tough whereas the artificial chalk made by the same material is fragile. In addition, most of artificial syntheses are performed under toxic, expensive and extreme environments in contrast to the natural syntheses, which are processed in benign and mild surroundings. If human can mimic these biological abilities, a variety of ecological and material issues can be solved.

The KAIST team modified a M13 viral gene, which is harmless to human and widely exist in nature, to utilize its remarkable ability of synthesizing a highly piezoelectric inorganic material, barium titanate (BaTiO3). By using this biotemplated piezoelectric material, a high-output flexible nanogenerator could be fabricated with an enhanced performance. The flexible piezoelectric nanogenerator that converts mechanical energy of tiny movements into electrical energy is an attractive candidate for the next generation energy harvesting technology. This biotemplated nanogenerator will drive commercial LCD screens and LED bulbs by simple finger movements.

Professor Lee said, "This is the first time to introduce a biotemplated inorganic piezoelectric material to a self-powered energy harvesting system, which can be realized through eco-friendly and efficient material syntheses."

###

The research result was published in the November online issue of the American Chemical Society's journal, ACS Nano (Virus-Directed Design of a Flexible BaTiO3 Nanogenerator). In addition, the team also extended their research to a large-area and mass producible "PZT based nanocomposite generator," which was published in the December issue of Advanced Energy Materials, a Wiley-VCH journal.

####

For more information, please click here

Contacts:
Lan Yoon

82-423-502-294

Copyright © The Korea Advanced Institute of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Display technology/LEDs/SS Lighting/OLEDs

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

Towards a better screen; New molecules promise cheaper, more efficient OLED displays August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Discoveries

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Announcements

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Energy

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Clusters of Nanoparticles protect against high temperature creep and radiations August 16th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Lithium-ion batteries: Capacity might be increased by 6 times August 9th, 2016

Iowa State scientists develop quick-destructing battery to power 'transient' devices August 8th, 2016

Stanford-led team reveals nanoscale secrets of rechargeable batteries August 8th, 2016

New X-Ray microscopy technique images nanoscale workings of rechargeable batteries: Method developed at Berkeley Lab's Advanced Light Source could help researchers improve battery performance August 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic