Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > KAIST developed the biotemplated design of piezoelectric energy harvesting device

First row: Schemes of each step to explain biotemplated nanogenerator fabrication by using genetically engineered virus. Second row: Electron microscopy of each step in biotemplated synthetic processes and digital photograph of the flexible biotemplated nanogenerator. Right inset shows the driven LED optical fibers by the energy harvester.

Credit: KAIST
First row: Schemes of each step to explain biotemplated nanogenerator fabrication by using genetically engineered virus. Second row: Electron microscopy of each step in biotemplated synthetic processes and digital photograph of the flexible biotemplated nanogenerator. Right inset shows the driven LED optical fibers by the energy harvester.

Credit: KAIST

Abstract:
A research team led by Professor Keon Jae Lee and Professor Yoon Sung Nam from the Department of Materials Science and Engineering at KAIST has developed the biotemplated design of flexible piezoelectric energy harvesting device, called "nanogenerator."

KAIST developed the biotemplated design of piezoelectric energy harvesting device

Ulsan, Korea | Posted on December 3rd, 2013

Nature has its own capabilities to spontaneously synthesize and self-assemble universal materials with sophisticated architectures such as shells, sea sponges, and bone minerals. For instance, the natural sea shell, consisting of calcium carbonate (CaCO3), is very rigid and tough whereas the artificial chalk made by the same material is fragile. In addition, most of artificial syntheses are performed under toxic, expensive and extreme environments in contrast to the natural syntheses, which are processed in benign and mild surroundings. If human can mimic these biological abilities, a variety of ecological and material issues can be solved.

The KAIST team modified a M13 viral gene, which is harmless to human and widely exist in nature, to utilize its remarkable ability of synthesizing a highly piezoelectric inorganic material, barium titanate (BaTiO3). By using this biotemplated piezoelectric material, a high-output flexible nanogenerator could be fabricated with an enhanced performance. The flexible piezoelectric nanogenerator that converts mechanical energy of tiny movements into electrical energy is an attractive candidate for the next generation energy harvesting technology. This biotemplated nanogenerator will drive commercial LCD screens and LED bulbs by simple finger movements.

Professor Lee said, "This is the first time to introduce a biotemplated inorganic piezoelectric material to a self-powered energy harvesting system, which can be realized through eco-friendly and efficient material syntheses."

###

The research result was published in the November online issue of the American Chemical Society's journal, ACS Nano (Virus-Directed Design of a Flexible BaTiO3 Nanogenerator). In addition, the team also extended their research to a large-area and mass producible "PZT based nanocomposite generator," which was published in the December issue of Advanced Energy Materials, a Wiley-VCH journal.

####

For more information, please click here

Contacts:
Lan Yoon

82-423-502-294

Copyright © The Korea Advanced Institute of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Energy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic