Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Super SQUID

Abstract:
Weizmann Institute scientists have taken a quantum leap toward understanding the phenomenon known as superconductivity: They have created the world's smallest SQUID - a device used to measure magnetic fields - which has broken the world record for sensitivity and resolution.

Super SQUID

Rehovot, Israel | Posted on November 25th, 2013

Superconductivity is a quantum phenomenon that only occurs when certain materials are cooled to extremely low temperatures. Then, they lose all resistance to the flow of electricity and expel the magnetic fields within them. Although used in everything from MRI scanners to particle accelerators, scientists still do not fully understand the physics that underlies the behavior of superconductors. Among other things, superconducting materials are found in the very SQUIDs used to measure superconducting properties: SQUID stands for Superconducting QUantum Interference Device.

Nano-SQUIDs are placed on probes to scan and measure the magnetic field at different points on a sample, forming an image of the entire surface - a bit like creating a heat map of a hand by measuring its temperature at individual points on the fingers and palms.

Even very sensitive SQUIDS present geometric challenges when it comes to scanning materials: They need to be as small as possible to attain the highest image resolution, and they need to get as close as possible to the sample to image the tiniest magnetic features. Postdoctoral fellows Drs. Yonathan Anahory and Denis Vasyukov, and PhD student Lior Embon, along with their colleagues in the lab of Prof. Eli Zeldov of the Condensed Matter Physics Department, have risen to the challenge - as reported in Nature Nanotechnology - thanks to a unique setup: They took a hollow quartz tube and pulled it into a very sharp point; then succeeded in fabricating a SQUID encircling the tip measuring a mere 46 nm in diameter - the smallest SQUID to date. They then constructed a scanning microscope around the tip - an achievement that enabled them to obtain magnetic images at distances as small as a few nanometers from the sample. Current SQUIDs manufacturing methods limit their size and their ability to get very close to a surface. "We have the opposite problem: We have to prevent the probe from ‘crashing' into the sample," says Embon. "While there are SQUIDs with higher sensitivities to uniform magnetic fields, the combination of high sensitivity, proximity of the probe to the sample and its minute dimensions make the overall accuracy of the device record-breaking." This "nano-SQUID-on-tip" might, in the future, be able to measure the magnetic field from the spin of a single electron - the Holy Grail of magnetic imaging.

According to Zeldov, who is already using the new device to investigate superconductive phenomena in his lab, this invention will hopefully not only lead to a better understanding of superconductivity and vortex flow for the effective application of superconductor technology, but will aid in gaining insights into novel physical phenomena. As a surprising, added bonus, the new SQUID appears to be able to measure many materials other than superconductors.

Prof. Eli Zeldov is the incumbent of the David and Inez Myers Professorial Chair.

####

About Weizmann Institute
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

For more information, please click here

Contacts:
Batya Greenman
Publications and Media Relations Department
Weizmann Institute of Science
PO Box 26
Rehovot, 7610001, ISRAEL
Tel: 972-8-934-3852
Fax: 972-8-934-4132

Copyright © Weizmann Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download abstract:

Related News Press

News and information

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Production of Industrial Nano-Membrane for Water, Wastewater Purification Device in Iran May 2nd, 2015

Superconductivity

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Imaging

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Discoveries

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Novel superconducting undulator provides first x-ray light at ANKA May 1st, 2015

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Announcements

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project