Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Next-generation Leti Magnetometers On Board Swarm Satellites Will Expand Understanding of Earth’s Magnetic Field: 3 Identical Satellites Launched Today by the European Space Agency to Provide Unprecedented Detail about the Magnetic Field and Why it Is Weakening

Abstract:
CEA-Leti's next-generation magnetometer technology was launched into space today on board the European Space Agency's three Swarm satellites to collect unprecedented detail about the Earth's magnetic field.

Next-generation Leti Magnetometers On Board Swarm Satellites Will Expand Understanding of Earth’s Magnetic Field: 3 Identical Satellites Launched Today by the European Space Agency to Provide Unprecedented Detail about the Magnetic Field and Why it Is Weakening

Grenoble, France | Posted on November 22nd, 2013

The four-year mission will gather data that for the first time will make it possible to distinguish between the various sources of the magnetic field: the Earth's core, mantle, crust and oceans, as well as the ionosphere and magnetosphere. These high-precision and high-resolution measurements will improve scientists' understanding of the Earth's magnetic-field structure, evolution and interaction with the solar wind. Scientists hope the data also will shed light on why the magnetic field, which shields the Earth from cosmic radiation and harmful charged particles in the solar wind, is weakening.

The three identical satellites, which were lifted into orbit by a Russian Rockot launcher, will be positioned so as to simultaneously acquire measurements in three different locations and time zones. They are carrying three measuring instruments that will directly contribute to the magnetic field studies:

• a vector magnetometer to measure the components of the magnetic field in space

• a stellar camera giving the orientation of the vector magnetometer in space, and

• a Leti-designed absolute scalar magnetometer (ASM) for measuring the intensity of the field without drift or bias, i.e. without systematic error, and with unmatched precision and resolution. The ASM's ability, unique in the world, to simultaneously measure the direction of the field will also be implemented in an experimental mode.

When they reach their orbiting positions 450 and 530 kilometers above Earth, the satellites will provide simultaneous measurements from three different positions at different local times. To prevent interference in the highly sensitive measurements by the crafts themselves, Leti's absolute scalar magnetometers will be deployed at the very tip of booms extending nine meters from the rear of each satellite platform.

"The Swarm mission's three absolute scalar magnetometers, which underscore Leti's advanced sensor design-and-performance capabilities, provide the mission with critical technologies for understanding past, present and future dynamics of the magnetic field," said Laurent Malier, CEO of Leti. "This is a tribute to the technological excellence that characterizes Leti's divisions and to our commitment to collaborate with French and European technology partners."

"We developed an architecture that is free of the orientation effects common to all standard scalar magnetometers based on magnetic resonance to take full advantage of the ASM's performance" said Jean-Michel Léger, manager of Leti's Space Applications Program. "These instruments represent the latest and most effective technology available to measure key characteristics of the magnetic field."

Developed from conception to space readiness with technical and financial assistance from CNES and scientific support from IPGP, the Leti magnetometers are Leti's third contribution to studying the magnetic field from space. Nuclear magnetic resonance (NMS) magnetometers, designed and developed with CNES support, were part of the 1999 Oersted and 2000 Champ missions. Designed for a 14-month data-gathering mission, the Oersted satellite is still sending data back to Earth.

CNES-IPGP researchers will be in charge of scientific validation of the data provided by the absolute scalar magnetometers.

The magnetic field models resulting from the Swarm mission also will further scientists' understanding of atmospheric processes related to climate and weather, will help improve the accuracy of navigation systems and will have practical applications in many different areas, such as space weather.

####

About CEA-Leti
By creating innovation and transferring it to industry, Leti is the bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. Backed by its portfolio of 2,200 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched more than 50 startups. Its 8,000m˛ of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. Leti’s staff of more than 1,700 includes 200 assignees from partner companies. Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38 78 02 26


Agency
+33 6 64 52 81 10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Announcements

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Aerospace/Space

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

National Space Society Supports VP Pence's Call for Constant Low-Earth Orbit Human Presence Leading to the Settlement of Space July 13th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project