Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Next-generation Leti Magnetometers On Board Swarm Satellites Will Expand Understanding of Earth’s Magnetic Field: 3 Identical Satellites Launched Today by the European Space Agency to Provide Unprecedented Detail about the Magnetic Field and Why it Is Weakening

Abstract:
CEA-Leti's next-generation magnetometer technology was launched into space today on board the European Space Agency's three Swarm satellites to collect unprecedented detail about the Earth's magnetic field.

Next-generation Leti Magnetometers On Board Swarm Satellites Will Expand Understanding of Earth’s Magnetic Field: 3 Identical Satellites Launched Today by the European Space Agency to Provide Unprecedented Detail about the Magnetic Field and Why it Is Weakening

Grenoble, France | Posted on November 22nd, 2013

The four-year mission will gather data that for the first time will make it possible to distinguish between the various sources of the magnetic field: the Earth's core, mantle, crust and oceans, as well as the ionosphere and magnetosphere. These high-precision and high-resolution measurements will improve scientists' understanding of the Earth's magnetic-field structure, evolution and interaction with the solar wind. Scientists hope the data also will shed light on why the magnetic field, which shields the Earth from cosmic radiation and harmful charged particles in the solar wind, is weakening.

The three identical satellites, which were lifted into orbit by a Russian Rockot launcher, will be positioned so as to simultaneously acquire measurements in three different locations and time zones. They are carrying three measuring instruments that will directly contribute to the magnetic field studies:

• a vector magnetometer to measure the components of the magnetic field in space

• a stellar camera giving the orientation of the vector magnetometer in space, and

• a Leti-designed absolute scalar magnetometer (ASM) for measuring the intensity of the field without drift or bias, i.e. without systematic error, and with unmatched precision and resolution. The ASM's ability, unique in the world, to simultaneously measure the direction of the field will also be implemented in an experimental mode.

When they reach their orbiting positions 450 and 530 kilometers above Earth, the satellites will provide simultaneous measurements from three different positions at different local times. To prevent interference in the highly sensitive measurements by the crafts themselves, Leti's absolute scalar magnetometers will be deployed at the very tip of booms extending nine meters from the rear of each satellite platform.

"The Swarm mission's three absolute scalar magnetometers, which underscore Leti's advanced sensor design-and-performance capabilities, provide the mission with critical technologies for understanding past, present and future dynamics of the magnetic field," said Laurent Malier, CEO of Leti. "This is a tribute to the technological excellence that characterizes Leti's divisions and to our commitment to collaborate with French and European technology partners."

"We developed an architecture that is free of the orientation effects common to all standard scalar magnetometers based on magnetic resonance to take full advantage of the ASM's performance" said Jean-Michel Léger, manager of Leti's Space Applications Program. "These instruments represent the latest and most effective technology available to measure key characteristics of the magnetic field."

Developed from conception to space readiness with technical and financial assistance from CNES and scientific support from IPGP, the Leti magnetometers are Leti's third contribution to studying the magnetic field from space. Nuclear magnetic resonance (NMS) magnetometers, designed and developed with CNES support, were part of the 1999 Oersted and 2000 Champ missions. Designed for a 14-month data-gathering mission, the Oersted satellite is still sending data back to Earth.

CNES-IPGP researchers will be in charge of scientific validation of the data provided by the absolute scalar magnetometers.

The magnetic field models resulting from the Swarm mission also will further scientists' understanding of atmospheric processes related to climate and weather, will help improve the accuracy of navigation systems and will have practical applications in many different areas, such as space weather.

####

About CEA-Leti
By creating innovation and transferring it to industry, Leti is the bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. Backed by its portfolio of 2,200 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched more than 50 startups. Its 8,000m˛ of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. Leti’s staff of more than 1,700 includes 200 assignees from partner companies. Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38 78 02 26


Agency
+33 6 64 52 81 10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project