Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ancient Roman glass inspires modern science

Abstract:
A 1700-year-old Roman glass cup is inspiring University of Adelaide researchers in their search for new ways to exploit nanoparticles and their interactions with light.

Ancient Roman glass inspires modern science

Adelaide, Australia | Posted on November 21st, 2013

Researchers in the University's Institute for Photonics and Advanced Sensing (IPAS) are investigating how to best embed nanoparticles in glass - instilling the glass with the properties of the nanoparticles it contains.

"Nanoparticles and nanocrystals are the focus of research around the world because of their unique properties that have the potential to bring great advances in a wide range of medical, optical and electronic fields," says Associate Professor Heike Ebendorff-Heidepriem, Senior Research Fellow in the University's School of Chemistry and Physics. "A process for successfully incorporating nanoparticles into glass, will open the way for applications like ultra low-energy light sources, more efficient solar cells or advanced sensors that can see inside the living human brain."

"We will be able to more readily harness these nanoscale properties in practical devices. This gives us a tangible material with nanoparticle properties that we can shape into useful forms for real-world applications. And the unique properties are actually enhanced by embedding in glass."

The Lycurgus Cup, a 4th century cup held by the British Museum in London, is made of glass which changes colour from red to green depending on whether light is shining through the Cup or reflected off it. It gets this property from gold and silver nanoparticles embedded in the glass.

"The Lycurgus Cup is a beautiful artefact which, by accident, makes use of the exciting properties of nanoparticles for decorative effect," says Associate Professor Ebendorff-Heidepriem. "We want to use the same principles to be able to use nanoparticles for all sorts of exciting advanced technologies."

Nanoparticles need to be held in some kind of solution. "Glass is a frozen liquid," says Associate Professor Ebendorff-Heidepriem. "By embedding the nanoparticles in the glass, they are fixed in a matrix which we can exploit."

Associate Professor Ebendorff-Heidepriem is leading a three-year Australian Research Council Discovery Project to investigate how best to embed nanoparticles; looking at the solubility of different types of nanoparticles in glass and how this changes with temperature and glass type, and how the nanoparticles are controlled and modified.

The work builds on a past project with collaborators who are now at RMIT University.

"It was pure serendipity. We found by chance the right glass and the right conditions to embed nano-diamond into glass, creating a single photon source in a fibre form," says Associate Professor Ebendorff-Heidepriem. "Now we need to find the right conditions for other nanoparticles and other glasses."

####

For more information, please click here

Contacts:
Associate Professor Heike Ebendorff-Heidepriem

Senior Research Fellow
School of Chemistry and Physics
The University of Adelaide
Business: +61 8 8313 1136
Mobile: +61 439 336 214

Ms Robyn Mills

Media and Communications Officer
The University of Adelaide
Business: +61 8 8313 6341
Mobile: +61 410 689 084

Copyright © The University of Adelaide

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Chip Technology

Researchers use sound waves to advance optical communication January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Nanomedicine

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Discoveries

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Materials/Metamaterials

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Ultrafine fibers have exceptional strength: New technique developed at MIT could produce strong, resilient nanofibers for many applications January 5th, 2018

Announcements

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Photonics/Optics/Lasers

Researchers use sound waves to advance optical communication January 22nd, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project