Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers at Penn Add Another Tool in Their Directed Assembly Toolkit

A submerged micropost causes the surrounding liquid crystal to form a ring pattern, directing nanoparticles on the surface.
A submerged micropost causes the surrounding liquid crystal to form a ring pattern, directing nanoparticles on the surface.

Abstract:
An interdisciplinary team of University of Pennsylvania researchers has already developed a technique for controlling liquid crystals by means of physical templates and elastic energy, rather than the electromagnetic fields that manipulate them in televisions and computer monitors. They envision using this technique to direct the assembly of other materials, such as nanoparticles.

Researchers at Penn Add Another Tool in Their Directed Assembly Toolkit

Philadelphia, PA | Posted on November 12th, 2013

Now, the Penn team has added another tool to its directed assembly toolkit, developing a new kind of template for rearranging particles and a new set of patterns that can be formed with them.

The team consists of Kathleen Stebe, the School of Engineering and Applied Science's deputy dean for research and professor in Chemical and Biomolecular Engineering; Randall Kamien, professor in the School of Arts and Sciences' Department of Physics and Astronomy; and Shu Yang, professor in Engineering's departments of Materials Science and Engineering and Chemical and Biomolecular Engineering. Members of their labs also contributed to the new study, including lead author Marcello Cavallaro Jr., Mohamed Gharbi, Daniel Beller, Simon Čopar, Zheng Shi and Tobias Baumgart.

Their work was published in the Proceedings of the National Academy of Sciences.

Crystals are materials that have molecules arrayed in regular three-dimensional patterns; liquid crystals contain some but not all of these patterns, and their molecules can flow around one another and change the direction they face. This behavior allows defects, places on the surface where the molecular orientation of the liquid crystals is disrupted.

Despite their name, such defects are highly desirable. If the location of the defects can be controlled, the change in pattern or orientation can be put to use. In a liquid crystal display, for example, the crystals' orientation in different regions determines which parts of the screen are illuminated.

In an earlier study, the team had used a template consisting of microscopic posts to arrange the defects on the surface of smectic liquid crystals, a class of the material that forms layers. The position, shape and symmetry of the posts allowed the researchers to manipulate the bottom layer of these liquid crystals which in turn generated patterns of defects on the top layer that were orders of magnitude smaller than the original template.

In their new study, the researchers use nematic liquid crystal, which have less long-range order in their patterns but are the kind found in liquid crystal displays.

"These nematic structures are very reconfigurable. That's the basis of why they're good for displays," Stebe said. "Everyone knew that materials can be moved and positioned with electric and magnetic fields, but we're doing it with fields of elastic energy and showing that this technology can be used in assembling materials."

As in their previous experiments, the team started with a template consisting of microscopic posts that was then topped with the liquid crystal. In this experiment, however, instead of a pattern of defects forming only on the surface of the liquid crystal, a ring-shaped defect encircled each of the posts at their midpoints. This ring then acts like another template, directing the arrangement of patterns on the liquid crystal surface, more than 50 microns away.

"With the smectic liquid crystals," Kamien said, "the patterns of defects we could make were closely associated with the corners of the posts. With nematic liquid crystals, we can form these rings, which is a new way to tell what to go where."

"And we're showing," Yang said, "that, whether we use smectic or nematic crystals, we can use a template that directs these surface defect arrays, which can then hold things like colloids, nanoparticles or quantum dots."

Being able to control the spacing and arrangement of these secondary materials could allow for making new types of antennas, sensors or displays. The team's latest study provides a new set of shapes and patterns to work with in the directed assembly approach to making such devices.

"We're building up the toolkit of the different structures we can make via different confinements of these materials," Stebe said. "Once we have our toolkit filled out, it's going to become more readily apparent how we can make these structures dance — how we can make them rearrange themselves however we want — the next wave of applications will come."

The research was supported by the National Science Foundation through Penn's Materials Research Science and Engineering Center, the Laboratory for Research on the Structure of Matter, as well as The Mark Howard Shapiro and Anita Rae Shapiro Charitable Fund, the Kavli Institute for Theoretical Physics and the Simons Foundation.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download abstract:

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Unraveling the light of fireflies December 17th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Molecular Nanotechnology

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Manipulating complex molecules by hand: New method in scanning probe microscopy: Jülich researchers create a word using 47 molecules November 6th, 2014

Discoveries

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Announcements

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE