Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers at Penn Add Another Tool in Their Directed Assembly Toolkit

A submerged micropost causes the surrounding liquid crystal to form a ring pattern, directing nanoparticles on the surface.
A submerged micropost causes the surrounding liquid crystal to form a ring pattern, directing nanoparticles on the surface.

Abstract:
An interdisciplinary team of University of Pennsylvania researchers has already developed a technique for controlling liquid crystals by means of physical templates and elastic energy, rather than the electromagnetic fields that manipulate them in televisions and computer monitors. They envision using this technique to direct the assembly of other materials, such as nanoparticles.

Researchers at Penn Add Another Tool in Their Directed Assembly Toolkit

Philadelphia, PA | Posted on November 12th, 2013

Now, the Penn team has added another tool to its directed assembly toolkit, developing a new kind of template for rearranging particles and a new set of patterns that can be formed with them.

The team consists of Kathleen Stebe, the School of Engineering and Applied Science's deputy dean for research and professor in Chemical and Biomolecular Engineering; Randall Kamien, professor in the School of Arts and Sciences' Department of Physics and Astronomy; and Shu Yang, professor in Engineering's departments of Materials Science and Engineering and Chemical and Biomolecular Engineering. Members of their labs also contributed to the new study, including lead author Marcello Cavallaro Jr., Mohamed Gharbi, Daniel Beller, Simon Čopar, Zheng Shi and Tobias Baumgart.

Their work was published in the Proceedings of the National Academy of Sciences.

Crystals are materials that have molecules arrayed in regular three-dimensional patterns; liquid crystals contain some but not all of these patterns, and their molecules can flow around one another and change the direction they face. This behavior allows defects, places on the surface where the molecular orientation of the liquid crystals is disrupted.

Despite their name, such defects are highly desirable. If the location of the defects can be controlled, the change in pattern or orientation can be put to use. In a liquid crystal display, for example, the crystals' orientation in different regions determines which parts of the screen are illuminated.

In an earlier study, the team had used a template consisting of microscopic posts to arrange the defects on the surface of smectic liquid crystals, a class of the material that forms layers. The position, shape and symmetry of the posts allowed the researchers to manipulate the bottom layer of these liquid crystals which in turn generated patterns of defects on the top layer that were orders of magnitude smaller than the original template.

In their new study, the researchers use nematic liquid crystal, which have less long-range order in their patterns but are the kind found in liquid crystal displays.

"These nematic structures are very reconfigurable. That's the basis of why they're good for displays," Stebe said. "Everyone knew that materials can be moved and positioned with electric and magnetic fields, but we're doing it with fields of elastic energy and showing that this technology can be used in assembling materials."

As in their previous experiments, the team started with a template consisting of microscopic posts that was then topped with the liquid crystal. In this experiment, however, instead of a pattern of defects forming only on the surface of the liquid crystal, a ring-shaped defect encircled each of the posts at their midpoints. This ring then acts like another template, directing the arrangement of patterns on the liquid crystal surface, more than 50 microns away.

"With the smectic liquid crystals," Kamien said, "the patterns of defects we could make were closely associated with the corners of the posts. With nematic liquid crystals, we can form these rings, which is a new way to tell what to go where."

"And we're showing," Yang said, "that, whether we use smectic or nematic crystals, we can use a template that directs these surface defect arrays, which can then hold things like colloids, nanoparticles or quantum dots."

Being able to control the spacing and arrangement of these secondary materials could allow for making new types of antennas, sensors or displays. The team's latest study provides a new set of shapes and patterns to work with in the directed assembly approach to making such devices.

"We're building up the toolkit of the different structures we can make via different confinements of these materials," Stebe said. "Once we have our toolkit filled out, it's going to become more readily apparent how we can make these structures dance how we can make them rearrange themselves however we want the next wave of applications will come."

The research was supported by the National Science Foundation through Penn's Materials Research Science and Engineering Center, the Laboratory for Research on the Structure of Matter, as well as The Mark Howard Shapiro and Anita Rae Shapiro Charitable Fund, the Kavli Institute for Theoretical Physics and the Simons Foundation.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download abstract:

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Atomically thin light-emitting device opens the possibility for 'invisible' displays March 26th, 2018

Nanostructures made of previously impossible material: How do you combine different elements in a crystal? At TU Wien, a method has now been developed for incorporating previously unattainably high proportions of foreign atoms into crystals March 9th, 2018

Molecular Nanotechnology

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Discoveries

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Announcements

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

2018 Kavli Prizes in Astrophysics, Nanoscience, and Neuroscience to be Announced Live on May 31: Live announcement at the Norwegian Academy of Science and Letters to be streamed live at World Science Festival Event May 24th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

2018 Kavli Prizes in Astrophysics, Nanoscience, and Neuroscience to be Announced Live on May 31: Live announcement at the Norwegian Academy of Science and Letters to be streamed live at World Science Festival Event May 24th, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project