Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Calculations reveal shortcut to characterize zeolites: Rice University method gives accurate picture of gas storage by microscopic cages

A rendering of ZIF-100, a synthetic zeolite, reveals plenty of surface area to which gas molecules (in gold) can bind. A new computer model by Rice University engineers accurately calculates binding forces between gases and zeolites to reveal the material’s maximum uptake capacity in a variety of conditions. Credit: Navid Sakhavand/Rice University
A rendering of ZIF-100, a synthetic zeolite, reveals plenty of surface area to which gas molecules (in gold) can bind. A new computer model by Rice University engineers accurately calculates binding forces between gases and zeolites to reveal the material’s maximum uptake capacity in a variety of conditions.

Credit: Navid Sakhavand/Rice University

Abstract:
A computational method to quantify the adsorption of gas by porous zeolites should help labs know what to expect before they embark upon slow, costly experiments, according to researchers at Rice University.

Calculations reveal shortcut to characterize zeolites: Rice University method gives accurate picture of gas storage by microscopic cages

Houston, TX | Posted on November 12th, 2013

The new method created by engineers in Rice's Multiscale Materials Modeling Lab accurately calculated the ability of two zeolites, small cage-like molecules with enormous surface area, to trap and store gas molecules.

Among other possibilities, the work could help in the race to meet Department of Energy (DOE) standards that call for the creation by 2015 of materials that can hold 5.5 percent of their weight in hydrogen to fuel vehicles.

"We think we can get there," said Rice materials scientist Rouzbeh Shahsavari, who calculated capacities for two of what he called "remarkably large and colossal cages" and found that one comes close to the mark.

The study by Shahsavari, graduate student Navid Sakhavand and former Rice postdoctoral researcher Prakash Muthuramalingam, now a postdoctoral researcher at Université Paris-Est, appears online in the American Chemical Society's Journal of Physical Chemistry.

The lab analyzed a dizzying array of potential interactions for two synthetic microporous materials known as zeolitic imidazolate frameworks, ZIF-95 and ZIF-100. Those "colossal cages" may be only nanometers wide, but the molecules they can store that the lab looked at — hydrogen, methane and nitrogen - are much smaller. The zeolites' enormous surface area inside and out gives gas molecules plenty of room to bind.

Aside from storing hydrogen for fuel, ZIFs show potential for size-selective catalysis, environmental remediation and for use as molecular sieves. "Imagine people are designing fit-for-purpose ZIFs," Sakhavand said. "Before jumping into the experiment and synthesizing them, we can help them rapidly screen the gas uptake for each particular ZIF at various temperatures and pressures."

The researchers' primary goal was to prove the accuracy of their method when compared with a host of experimental results on hydrogen storage carried out elsewhere. Shahsavari said the researchers modeled the interactions between molecules of the three gases with each other and with the binding ligands in the zeolites at 77 and 300 kelvins (-321 and 80 degrees Fahrenheit, respectively) and at various pressures.

For hydrogen, they determined that both zeolites stored about three times as much gas at 77 K and at 100-bar pressure (100 times that of the atmosphere at sea level) than they would at room temperature. ZIF-100, in particular, adsorbed 3.4 percent of its weight in hydrogen, which approaches the DOE standard, Shahsavari said.

"We didn't reach that DOE target with this design, but if we can functionalize the ZIFs by adding ligand-binding moieties (the functional groups in a molecule) into the pore space, then we might be able to. We're working on that," he said.

They were also able to calculate both subtle and significant differences between the adsorptive qualities based on various input parameters of gas, pressure, temperature and type of zeolite. For example, they came to the counterintuitive conclusion that ZIF-100, the larger of the two zeolites, could adsorb more small-molecule hydrogen but fewer of the larger methane molecules than ZIF-95 under similar conditions.

"So our method not only accurately predicts the properties of these porous materials, but also provides fundamental insights that can be leveraged to further improve their properties," Shahsavari said.

The Rice lab's method involved several steps. First, the team performed first-principle calculations to describe the very weak atomic interactions - the van der Waals-related London dispersion forces — among each of the three types of gas molecules and the two ZIFs. The next step used those results to align the potentials among various atomic pairs. Those were plugged into large-scale Monte Carlo simulations to predict how much of each gas each porous zeolite could adsorb.

"Because we combined two methods, each appropriate for a different length scale, we were able to predict the maximum capacity of these materials with high accuracy while maintaining reasonable computational time," Shahsavari said.

The method may seem simple, but calculating integrative forces between thousands of gas molecules and each ZIF was not. It took the combined power of Rice's DAVinCI and SUGAR supercomputers to find results for all the variations. Even so, calculations for a single data point - one molecule, one zeolite, one temperature - often took 96 processing cores three days to complete.

Shahsavari said the method should also be good for analyzing the potential for zeolites as membranes to separate gases. "It can work not only for single molecules, but also gas mixtures," he said. "This provides a good computational framework so one can do rapid screening for the desired properties."

Rice University, the National Institutes of Health, the National Science Foundation and an IBM Shared University Research Award in partnership with CISCO, Qlogic and Adaptive Computing supported the research. The Data Analysis and Visualization Cyber Infrastructure (DAVinCI) and Shared University Grid at Rice (SUGAR) supercomputers are administered by Rice's Ken Kennedy Institute for Information Technology.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Shahsavari Group:

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Discoveries

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Materials/Metamaterials

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Automotive/Transportation

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project