Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ZEISS Microscopes used to create images for Art Exhibit at Midway Airport: Art of Science: Images from the Institute for Genomic Biology

Abstract:
An art exhibit at Chicago's Midway Airport features images created by using microscopy equipment by ZEISS. Researchers from the Institute for Genomic Biology (IGB) Core Facilities, affiliated with the University of Illinois at Urbana-Champaign, used state-of-the-art microscopes for pioneering research to capture images that address significant problems facing humanity related to health, agriculture, energy and the environment. Twelve different images from IGB's innovative research have been turned into pieces of artwork that travelers can view while using the airport. Five of the images in the exhibit were produced using ZEISS equipment.

ZEISS Microscopes used to create images for Art Exhibit at Midway Airport: Art of Science: Images from the Institute for Genomic Biology

Thornwood, NY | Posted on October 25th, 2013

One of the pieces of art is an image of proteins in cancer cells taken with the ZEISS LSM 710 Laser Scanning Confocal Microscope, which defines new standards for sensitivity and flexibility in examining fluorescent biological specimens. The illumination and detection design provides new possibilities in research conducted with living multi-labeled cells. The LSM 710 confocal microscope has increased sensitivity, a higher signal-to-noise ratio, improved flexibility for new fluorescence dyes and multimodal experiments, as well as new multiphoton detectors, which allow for deeper optical penetration into biological structures.
A 3D fast Fourier transformation of a cell image was taken with the ZEISS ELYRA S.1 superresolution structured illumination system, which images fluorophores with up to twice the resolution of a conventional light microscope. Superresolution microscopy enables fluorescence imaging of structures too small for traditional methods, such as deconvolution and confocal microscopy.
A Micro-Drill Tool Tip is another image turned into art and was taken using the ZEISS LSM 700 confocal microscope. This confocal laser scanning microscope has a compact design and performs fluorescence measurements, creates optical sections of samples, and combines them into 3D image stacks. ZEN imaging software shortens the training period and stores the settings for all users.
An image of the Birefringence of Glucose Monohydrate was taken with the ZEISS Axiovert.A1 200M This model has been replaced with the ZEISS Axio Observer, an inverted microscope with extensive performance capabilities. Highly configurable, this microscope has a variety of excitation and detector options and can be upgraded with high speed, confocal and superresolution. The ZEISS Axio Observer is equipped with environmental controls, for long term, gentle imaging of living samples.

The final piece of art was created using the ZEISS LSM 710 Laser Scanning Confocal Microscope. IGB researchers used it to take an image of a 3D cleared and tiled Miscanthus. The prerequisite for every demanding application in laser scanning microscopy is enhanced sensitivity and reduced background noise. The ZEISS LSM 710 suppresses noise from excitation laser light to deliver class leading signal to noise, even with tricky preparations, such as those with dense 3D tissue or cells growing directly on metallic substrates.

####

About Carl Zeiss Microscopy, LLC
The Microscopy business group at ZEISS is the world’s only manufacturer of light, X-ray and electron microscopes. The company’s extensive portfolio enables research and routine applications in the life and materials sciences. The product range includes light and laser scanning microscopes, X-ray microscopes, electron and ion microscopes and spectrometer modules. Users are supported for software and system control, image capture and editing. The Microscopy business group has sales companies in 33 countries. Application and service specialists support customers around the globe in demo centers and on site. The business group is headquartered in Jena, Germany. Additional production and development sites are in Oberkochen, Goettingen and Munich, as well as in Cambridge in the UK and Peabody, MA and Pleasanton, CA in the USA. The company has around 2,800 employees and generates revenue of 650 million euros.

About the Institute for Genomic Biology

The Institute for Genomic Biology (IGB) at the University of Illinois is dedicated to researching significant problems facing humanity. Treating chronic human diseases, managing new and emerging pests and pathogens, and maintaining abundant and healthy food and water supplies are just a few of the big challenges being addressed at IGB. Established in 2003, the Institute for Genomic Biology harnesses new and emerging genomics technologies to advance basic biology research and to apply those innovations to create useful products and high-tech jobs. Learn more at www.igb.illinois.edu or contact: Melissa McKillip, (217) 333-4619, .

For more information, please click here

Contacts:
Maya Everett, PhD
Carl Zeiss Microscopy, LLC
Office: (914) 681-7782

Copyright © Carl Zeiss Microscopy, LLC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Tools

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

Human Interest/Art

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Oxford Instruments Asylum Research Announces AFM Image Contest Winners January 11th, 2015

Longhorn beetle inspires ink to fight counterfeiting November 5th, 2014

Events/Classes

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

New conductive coatings for flexible touchscreens – presentation at nano tech 2015 in Japan January 22nd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE