Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Team uses forest waste to develop cheaper, greener supercapacitors

Any kind of wood can be made into biochar by heating in a low-oxygen chamber. Some types of wood work better than others. Pictured, left to right, are white birch, white pine and red cedar.Photo by L. Brian Stauffer
Any kind of wood can be made into biochar by heating in a low-oxygen chamber. Some types of wood work better than others. Pictured, left to right, are white birch, white pine and red cedar.

Photo by L. Brian Stauffer

Abstract:
Researchers report that wood-biochar supercapacitors can produce as much power as today's activated-carbon supercapacitors at a fraction of the cost - and with environmentally friendly byproducts.

Team uses forest waste to develop cheaper, greener supercapacitors

Champaign, IL | Posted on October 24th, 2013

The report appears in the journal Electrochimica Acta.

"Supercapacitors are power devices very similar to our batteries," said study leader Junhua Jiang, a senior research engineer at the Illinois Sustainable Technology Center at the University of Illinois. While batteries rely on chemical reactions to produce sustained electrical energy, supercapacitors collect charged ions on their electrodes (in this case, the biochar), and quickly release those ions during discharge. This allows them to supply energy in short, powerful bursts - during a camera flash, for example, or in response to peak demand on the energy grid, Jiang said.

"Supercapacitors are ideal for applications needing instant power and can even provide constant power - like batteries, but at lower cost," he said. They are useful in transportation, electronics and solar- and wind-power energy storage and distribution.

Many of today's supercapacitors use activated carbon - usually from a fossil-fuel source, Jiang said.

"Costly and complicated procedures are normally used to develop the microstructures of the carbon - to increase the number of pores and optimize the pore network," he said. "This increases the surface area of the electrode and the pores' ability to rapidly capture and release the ions."

In wood-biochar supercapacitors, the wood's natural pore structure serves as the electrode surface, eliminating the need for advanced techniques to fabricate an elaborate pore structure. Wood biochar is produced by heating wood in low oxygen.

The pore sizes and configurations in some woods are ideal for fast ion transport, Jiang said. The new study used red cedar, but several other woods such as maple and cherry also work well.

Expensive and corrosive chemicals are often used to prepare the activated carbon used in supercapacitors, giving the electrodes the physical and chemical properties they need to function well, Jiang said.

"The use of those chemicals will probably impose some environmental impacts," he said. "This should be avoided or at least substantially reduced."

Jiang and his team activated their biochar with mild nitric acid, which washed away the ash (calcium carbonate, potassium carbonate and other impurities) in the biochar. The byproduct of this process has a beneficial use, Jiang said: The resulting solution of nitrate compounds can be used as fertilizer.

These simple approaches dramatically cut the material and environmental costs of assembling supercapacitors.

"The material costs of producing wood-biochar supercapacitors are five to 10 times lower than those associated with activated carbon," Jiang said. And when a biochar supercapacitor has reached the end of its useful life, the electrodes can be crushed and used as an organic soil amendment that increases fertility.

"The performance of our biochar materials is comparable to the performance of today's advanced carbon materials, including carbon nanotubes and graphenes," Jiang said. "We can achieve comparable performance with much less cost and probably much lower environmental costs."

The Illinois Hazardous Waste Research Fund and the HeteroFoaM Center (an Energy Frontier Research Center funded by the U.S. Department of Energy's Office of Basic Research) supported this study (award #DESC0001061).

The Illinois Sustainability Technology Center is part of the Prairie Research Institute at the U. of I.

####

For more information, please click here

Contacts:
Diana Yates
Life Sciences Editor
217-333-5802


Junhua Jiang

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Highly Ordered Macroporous Woody Biochar With Ultra-High Carbon Content as Supercapacitor Electrodes,” is available online:

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Graphene/ Graphite

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

Govt.-Legislation/Regulation/Funding/Policy

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

Discoveries

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Environment

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Energy

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project