Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Team uses forest waste to develop cheaper, greener supercapacitors

Any kind of wood can be made into biochar by heating in a low-oxygen chamber. Some types of wood work better than others. Pictured, left to right, are white birch, white pine and red cedar.Photo by L. Brian Stauffer
Any kind of wood can be made into biochar by heating in a low-oxygen chamber. Some types of wood work better than others. Pictured, left to right, are white birch, white pine and red cedar.

Photo by L. Brian Stauffer

Abstract:
Researchers report that wood-biochar supercapacitors can produce as much power as today's activated-carbon supercapacitors at a fraction of the cost - and with environmentally friendly byproducts.

Team uses forest waste to develop cheaper, greener supercapacitors

Champaign, IL | Posted on October 24th, 2013

The report appears in the journal Electrochimica Acta.

"Supercapacitors are power devices very similar to our batteries," said study leader Junhua Jiang, a senior research engineer at the Illinois Sustainable Technology Center at the University of Illinois. While batteries rely on chemical reactions to produce sustained electrical energy, supercapacitors collect charged ions on their electrodes (in this case, the biochar), and quickly release those ions during discharge. This allows them to supply energy in short, powerful bursts - during a camera flash, for example, or in response to peak demand on the energy grid, Jiang said.

"Supercapacitors are ideal for applications needing instant power and can even provide constant power - like batteries, but at lower cost," he said. They are useful in transportation, electronics and solar- and wind-power energy storage and distribution.

Many of today's supercapacitors use activated carbon - usually from a fossil-fuel source, Jiang said.

"Costly and complicated procedures are normally used to develop the microstructures of the carbon - to increase the number of pores and optimize the pore network," he said. "This increases the surface area of the electrode and the pores' ability to rapidly capture and release the ions."

In wood-biochar supercapacitors, the wood's natural pore structure serves as the electrode surface, eliminating the need for advanced techniques to fabricate an elaborate pore structure. Wood biochar is produced by heating wood in low oxygen.

The pore sizes and configurations in some woods are ideal for fast ion transport, Jiang said. The new study used red cedar, but several other woods such as maple and cherry also work well.

Expensive and corrosive chemicals are often used to prepare the activated carbon used in supercapacitors, giving the electrodes the physical and chemical properties they need to function well, Jiang said.

"The use of those chemicals will probably impose some environmental impacts," he said. "This should be avoided or at least substantially reduced."

Jiang and his team activated their biochar with mild nitric acid, which washed away the ash (calcium carbonate, potassium carbonate and other impurities) in the biochar. The byproduct of this process has a beneficial use, Jiang said: The resulting solution of nitrate compounds can be used as fertilizer.

These simple approaches dramatically cut the material and environmental costs of assembling supercapacitors.

"The material costs of producing wood-biochar supercapacitors are five to 10 times lower than those associated with activated carbon," Jiang said. And when a biochar supercapacitor has reached the end of its useful life, the electrodes can be crushed and used as an organic soil amendment that increases fertility.

"The performance of our biochar materials is comparable to the performance of today's advanced carbon materials, including carbon nanotubes and graphenes," Jiang said. "We can achieve comparable performance with much less cost and probably much lower environmental costs."

The Illinois Hazardous Waste Research Fund and the HeteroFoaM Center (an Energy Frontier Research Center funded by the U.S. Department of Energy's Office of Basic Research) supported this study (award #DESC0001061).

The Illinois Sustainability Technology Center is part of the Prairie Research Institute at the U. of I.

####

For more information, please click here

Contacts:
Diana Yates
Life Sciences Editor
217-333-5802


Junhua Jiang

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Highly Ordered Macroporous Woody Biochar With Ultra-High Carbon Content as Supercapacitor Electrodes,” is available online:

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Graphene/ Graphite

Researchers design one of the strongest, lightest materials known: Porous, 3-D forms of graphene developed at MIT can be 10 times as strong as steel but much lighter January 7th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Nanotubes/Buckyballs/Fullerenes

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Discoveries

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Environment

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Energy

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale view of energy storage January 16th, 2017

One step closer to reality: Devices that convert heat into electricity: Composite material yields 10 times -- or higher -- voltage output January 4th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project