Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superparamagnetic Lead Nanopowder - A New Milestone: Indian researchers have explored the superparamagntism of lead nanopowder

Abstract:
Indian researchers (Theivasanthi and Alagar) have discovered the superparamagntism of lead nanopowder. The group, based at Centre for Research and Post Graduate Studies in Physics, Ayya Nadar Janaki Ammal College has crossed an another milestone in its research activities by exploring the new behavior of this metal nanopowder. It comments: "It is really amazing to us; to our best knowledge, this is the first demonstration of superparamagnetic nature of lead nanopowder (Pb); so far, lead metal has been known as a diamagnetic; this new exploration of new behavior has moved us one step forward and upward in our research".

Superparamagnetic Lead Nanopowder - A New Milestone: Indian researchers have explored the superparamagntism of lead nanopowder

Sivakasi, India | Posted on October 1st, 2013

In their earlier reports, the researchers have explained the synthesis procedures of this metal powder [Theivasanthi et al, hgoo.gl/bXphv ] and explore its semi-conducting properties [Theivasanthi et al, goo.gl/IyWXzq ]. In their current report, the superparamagnetic properties have been explained [Theivasanthi et al, goo.gl/dyg2H1].

If both semiconducting and superparamagnetism behaviours available in same material, it will provide a single platform for computation and data storage. It will integrate computer memory with data processing lead to new kind of computation, in future. Findings of this study suggest that the synthesized material is an efficient superparamagnetic material. It can be utilized for various applications like magnetic, Storage Devices, Medical & Biomedical and other applications like Research tools in materials physics, geology, biology, medicine etc. Hysteresis Curve image of spherical Pb Nanoparticles is in Fig.1. This work throws some light on and helps further research on nano-sized lead powder.

Generally nano-materials have behaviors different from their bulk material. Size and shape control many of the physical properties including magnetic properties of nanomaterials. The present research has been done, based on this fact and superparamagnetic properties of Pb nanopowder have been explored. Vibrating Sample Magnetometer (VSM) study of the material indicates sigmoid or S-like shape hysteresis, without any loop / squareness (SQR i.e. Mr/Ms of the sample is 0.03517). It does not exhibit coercivity (Hc) saturated magnetization (Ms) and remanent magnetization (Mr). The net magnetization in the absence of an external field is zero. These characters confirm superparamagnetic properties.

"Our data clearly indicates the superparamagnetic nature of Pb nanopowder," the researchers comment, adding: "Further research related to application oriented of this material like magnetic and solar cells is going on." Interested collaborators / researchers, please contact us, for collaborative works.

####

For more information, please click here

Contacts:
T.Theivasanthi
Phone: 9344643384

Copyright © Ayya Nadar Janaki Ammal College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project