Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Superparamagnetic Lead Nanopowder - A New Milestone: Indian researchers have explored the superparamagntism of lead nanopowder

Abstract:
Indian researchers (Theivasanthi and Alagar) have discovered the superparamagntism of lead nanopowder. The group, based at Centre for Research and Post Graduate Studies in Physics, Ayya Nadar Janaki Ammal College has crossed an another milestone in its research activities by exploring the new behavior of this metal nanopowder. It comments: "It is really amazing to us; to our best knowledge, this is the first demonstration of superparamagnetic nature of lead nanopowder (Pb); so far, lead metal has been known as a diamagnetic; this new exploration of new behavior has moved us one step forward and upward in our research".

Superparamagnetic Lead Nanopowder - A New Milestone: Indian researchers have explored the superparamagntism of lead nanopowder

Sivakasi, India | Posted on October 1st, 2013

In their earlier reports, the researchers have explained the synthesis procedures of this metal powder [Theivasanthi et al, hgoo.gl/bXphv ] and explore its semi-conducting properties [Theivasanthi et al, goo.gl/IyWXzq ]. In their current report, the superparamagnetic properties have been explained [Theivasanthi et al, goo.gl/dyg2H1].

If both semiconducting and superparamagnetism behaviours available in same material, it will provide a single platform for computation and data storage. It will integrate computer memory with data processing lead to new kind of computation, in future. Findings of this study suggest that the synthesized material is an efficient superparamagnetic material. It can be utilized for various applications like magnetic, Storage Devices, Medical & Biomedical and other applications like Research tools in materials physics, geology, biology, medicine etc. Hysteresis Curve image of spherical Pb Nanoparticles is in Fig.1. This work throws some light on and helps further research on nano-sized lead powder.

Generally nano-materials have behaviors different from their bulk material. Size and shape control many of the physical properties including magnetic properties of nanomaterials. The present research has been done, based on this fact and superparamagnetic properties of Pb nanopowder have been explored. Vibrating Sample Magnetometer (VSM) study of the material indicates sigmoid or S-like shape hysteresis, without any loop / squareness (SQR i.e. Mr/Ms of the sample is 0.03517). It does not exhibit coercivity (Hc) saturated magnetization (Ms) and remanent magnetization (Mr). The net magnetization in the absence of an external field is zero. These characters confirm superparamagnetic properties.

"Our data clearly indicates the superparamagnetic nature of Pb nanopowder," the researchers comment, adding: "Further research related to application oriented of this material like magnetic and solar cells is going on." Interested collaborators / researchers, please contact us, for collaborative works.

####

For more information, please click here

Contacts:
T.Theivasanthi
Phone: 9344643384

Copyright © Ayya Nadar Janaki Ammal College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Discoveries

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Materials/Metamaterials

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project