Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > With carbon nanotubes, a path to flexible, low-cost sensors: Potential applications range from air-quality monitors to electronic skin

Flexible, high-performance gas sensors (left) were made by spraying a solution of carbon nanotubes (right) onto a plastic backing.

Credit: Uli Benz/TUM
Flexible, high-performance gas sensors (left) were made by spraying a solution of carbon nanotubes (right) onto a plastic backing.

Credit: Uli Benz/TUM

Abstract:
Researchers at the Technische Universitaet Muenchen (TUM) are showing the way toward low-cost, industrial-scale manufacturing of a new family of electronic devices. A leading example is a gas sensor that could be integrated into food packaging to gauge freshness, or into compact wireless air-quality monitors. New types of solar cells and flexible transistors are also in the works, as well as pressure and temperature sensors that could be built into electronic skin for robotic or bionic applications. All can be made with carbon nanotubes, sprayed like ink onto flexible plastic sheets or other substrates.

With carbon nanotubes, a path to flexible, low-cost sensors: Potential applications range from air-quality monitors to electronic skin

Munich, Germany | Posted on September 25th, 2013

Carbon nanotube-based gas sensors created at TUM offer a unique combination of characteristics that can't be matched by any of the alternative technologies. They rapidly detect and continuously respond to extremely small changes in the concentrations of gases including ammonia, carbon dioxide, and nitrogen oxide. They operate at room temperature and consume very little power. Furthermore, as the TUM researchers report in their latest papers, such devices can be fabricated on flexible backing materials through large-area, low-cost processes.

Thus it becomes realistic to envision plastic food wrap that incorporates flexible, disposable gas sensors, providing a more meaningful indicator of food freshness than the sell-by date. Measuring carbon dioxide, for example, can help predict the shelf life of meat. "Smart packaging" - assuming consumers find it acceptable and the devices' non-toxic nature can be demonstrated - could enhance food safety and might also vastly reduce the amount of food that is wasted. Used in a different setting, the same sort of gas sensor could make it less expensive and more practical to monitor indoor air quality in real time.

Not so easy - but "really simple"

Postdoctoral researcher Alaa Abdellah and colleagues at the TUM Institute for Nanoelectronics have demonstrated that high-performance gas sensors can be, in effect, sprayed onto flexible plastic substrates. With that, they may have opened the way to commercial viability for carbon nanotube-based sensors and their applications. "This really is simple, once you know how to do it," says Prof. Paolo Lugli, director of the institute.

The most basic building block for this technology is a single cylindrical molecule, a rolled-up sheet of carbon atoms that are linked in a honeycomb pattern. This so-called carbon nanotube could be likened to an unimaginably long garden hose: a hollow tube just a nanometer or so in diameter but perhaps millions of times as long as it is wide. Individual carbon nanotubes exhibit amazing and useful properties, but in this case the researchers are more interested in what can be done with them en masse.

Laid down in thin films, randomly oriented carbon nanotubes form conductive networks that can serve as electrodes; patterned and layered films can function as sensors or transistors. "In fact," Prof. Lugli explains, "the electrical resistivity of such films can be modulated by either an applied voltage (to provide a transistor action) or by the adsorption of gas molecules, which in turn is a signature of the gas concentration for sensor applications."

And as a basis for gas sensors in particular, carbon nanotubes combine advantages (and avoid shortcomings) of more established materials, such as polymer-based organic electronics and solid-state metal-oxide semiconductors. What has been lacking until now is a reliable, reproducible, low-cost fabrication method.

Spray deposition, supplemented if necessary by transfer printing, meets that need. An aqueous solution of carbon nanotubes looks like a bottle of black ink and can be handled in similar ways. Thus devices can be sprayed - from a computer-controlled robotic nozzle - onto virtually any kind of substrate, including large-area sheets of flexible plastic. There is no need for expensive clean-room facilities.

"To us it was important to develop an easily scalable technology platform for manufacturing large-area printed and flexible electronics based on organic semiconductors and nanomaterials," Dr. Abdellah says. "To that end, spray deposition forms the core of our processing technology."

Remaining technical challenges arise largely from application-specific requirements, such as the need for gas sensors to be selective as well as sensitive.

This research was partially supported by the German Research Foundation (DFG) through the Cluster of Excellence Nanosystems Initiative Munich (NIM), and by the Bavarian State Ministry for Science, Research and the Arts under the initiative Solar Technologies Go Hybrid.

Publications:

Fabrication of carbon nanotube thin films on flexible substrates by spray deposition and transfer printing. Ahmed Abdelhalim, Alaa Abdellah, Giuseppe Scarpa, Paolo Lugli. Carbon, Vol. 61, September 2013, 72-79. DOI: 10.1016/j.carbon.2013.04.069

Flexible carbon nanotube-based gas sensors fabricated by large-scale spray deposition. Alaa Abdellah, Zubair Ahmad, Philipp Khler, Florin Loghin, Alexander Weise, Giuseppe Scarpa, Paolo Lugli. IEEE Sensors Journal, Vol. 13 Issue 10, October 2013, 4014-4021. DOI: 10.1109/JSEN.2013.2265775

Scalable spray deposition process for high performance carbon nanotube gas sensors. Alaa Abdellah, Ahmed Abdelhalim, Markus Horn, Giuseppe Scarpa, and Paolo Lugli. IEEE Transactions on Nanotechnology 12, 174-181, 2013. DOI: 10.1109/TNANO.2013.2238248

####

About Technische Universitaet Muenchen
Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 500 professors, 9,000 academic and non-academic staff, and 32,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Excellence University" in 2006 and 2012 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). In both international and national rankings, TUM is rated as one of Germany's top universities and is dedicated to the ideal of a top-level research-oriented entrepreneurial university. The university's global presence includes offices in Beijing (China), Brussels (Belgium), Cairo (Egypt), Mumbai (India) and So Paulo (Brazil). The German Institute of Science and Technology (GIST - TUM Asia), founded in 2002 in Singapore, is the first research campus of a German university abroad.

For more information, please click here

Contacts:
Patrick Regan

49-016-242-79876

Dr. Alaa Abdellah
Technische Universitaet Muenchen
Institute for Nanoelectronics
T: +49 89 289 25335

W: http://www.nano.ei.tum.de/

Prof. Paolo Lugli
Technische Universitaet Muenchen
Institute for Nanoelectronics
T: +49 89 289 25332

W: http://www.nano.ei.tum.de/

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Thin films

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

Industrial Nanotech, Inc. Introduces Ultra Thin High Performance Thermal Insulation Film for Cooling Personal Electronic Devices July 21st, 2015

Imec Makes Steady Progress on Perovskite Photovoltaic Module reaching a Record 11 Percent Conversion Efficiency July 16th, 2015

Nanotubes/Buckyballs/Fullerenes

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Sensors

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

American Chemical Society expands reach to include rapidly emerging area of sensor science July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Discoveries

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Food/Agriculture/Supplements

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

QuantumSphere Completes State-of-the-Art Nanocatalyst Production Facility: Now Positioned to Capitalize on Commercial Validation and JDA with Casale, SA July 25th, 2015

3D-printed 'smart cap' uses electronics to sense spoiled food July 20th, 2015

Environmentally friendly lignin nanoparticle 'greens' silver nanobullet to battle bacteria July 13th, 2015

Environment

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Industrial

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

More efficient process to produce graphene developed by Ben-Gurion University researchers July 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project