Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecules pass through nanotubes at size-dependent speeds

A diagram of one of the group's experimental setups shows a copper plate that can be heated using a torch underneath it, to study the effect of temperature on the process. On top of the plate, an apparatus consisting of two reservoirs separated by a silicon structure that has a single carbon nanotube on top of it. When a power source is connected to the electrodes (the wires extending up from the device), charged molecules (ions) from one of the reservoirs can pass through the tube, and its progress can be monitored using a scanning electron microscope.
Illustration courtesy of Choi et al.
A diagram of one of the group's experimental setups shows a copper plate that can be heated using a torch underneath it, to study the effect of temperature on the process. On top of the plate, an apparatus consisting of two reservoirs separated by a silicon structure that has a single carbon nanotube on top of it. When a power source is connected to the electrodes (the wires extending up from the device), charged molecules (ions) from one of the reservoirs can pass through the tube, and its progress can be monitored using a scanning electron microscope.

Illustration courtesy of Choi et al.

Abstract:
Like a pea going through a straw, tiny molecules can pass through microscopic cylinders known as nanotubes. This could potentially be used to select molecules according to size — for example, to purify water by allowing water molecules to pass through while blocking salt or other substances.

Molecules pass through nanotubes at size-dependent speeds

Cambridge, MA | Posted on September 12th, 2013

Now, researchers at MIT, Seoul University in Korea and Ursinus College in Pennsylvania have found that such tubes are more selective than had been thought: Molecules of a precise size can zip through five times faster than those that are a bit smaller or larger. The new findings are published in the journal Nature Communications by MIT professor Michael Strano, graduate students Wonjoon Choi and Zachary Ulissi, and three others.

This size-dependence in nanotube transport was completely unexpected, says Strano, a professor of chemical engineering at MIT. "This work illustrates how transport in pores of this type remains exotic and relatively unexplored," he says.

The team "looked at ion transport through the smallest single nanopores that have been studied," Strano says. The carbon nanotubes they studied had widths ranging from 0.9 to 2 nanometers — about the diameter of a DNA helix — and were about 1 millimeter long.

"What we found was not predicted by theory," he says: Up to a certain diameter, the flow of ions through a nanotube increased steadily — but then beyond that diameter, the flow decreased. "The dependence is a volcano-shaped plot," Strano says.

The peak flow, at the center of that plot, allows transport that is five times greater than transport at smaller or larger diameters. "The experimental results are counterintuitive," Strano says, "that there appears to be an optimal diameter."

This size-dependence of transport could turn out to be useful in a variety of technologies, he suggests, including proton-exchange membrane (PEM) fuel cells, where molecules of oxygen or hydrogen must pass through tiny pores in a membrane to produce electricity. Another potential application is in DNA-sequencing devices, where DNA segments typically hurtle through pores much too quickly to be analyzed. The new understanding may provide a method for "tuning" the transit speed to slow the DNA sequences enough for analysis.

The unexpected size-dependence results from two phenomena, Strano suggests. According to a theory developed by the team, there is first an attractive force, in which ions' electrical charge causes them to be pulled by an electric field through the pore. Since the ions and the tubes are all submerged in water, some water gets pulled along as well.

Up to a certain diameter, those water molecules form a layer, or a few layers, around the ion and are pulled along with it, the team theorizes. But as the opening gets bigger, the water behaves as a bulk material, slowing the ions' passage. "This explanation is consistent with our experimental observations and molecular simulations of water inside of nanotubes of this type," Strano says — though he stresses that while the data on the ion flow is clear-cut, additional theoretical work is needed to fully understand this process.

The finding may help in designing better membranes for desalination of water. The biggest problem with today's membranes is the tradeoff between selectivity versus flow rates: Bigger pores let the water flow through faster, but are less selective. Nanotubes' nonlinear response may provide a way around that.

"The results suggest that by using nanopores of a specific diameter, it may be possible to achieve maximum selectivity with maximum throughput" by optimizing the pore size, Strano says.

The work could also lead to new sensors capable of detecting specific contaminants in water, the team says. For example, arsenic contamination of groundwater is a serious health concern in some regions, but there is no reliable way of testing arsenic concentrations in water. The selectivity of nanotubes might make it possible to design a simple detector that could measure such contamination, Strano says.

In addition to Choi and Ulissi, the work was carried out by MIT graduate students Steven Shimizu and Darin Bellisario, as well as Mark Ellison of Ursinus.

The work was supported by the U.S. Department of Energy and Department of Defense.

Written by David Chandler, MIT News Office

####

For more information, please click here

Contacts:
Sarah McDonnell

617-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: "Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes":

Related News Press

News and information

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Nanotubes/Buckyballs

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Taking aircraft manufacturing out of the oven: New technique uses carbon nanotube film to directly heat and cure composite materials April 14th, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

Sensors

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

New Biosensor Increases Possibility to Predict Potential of Heart Diseases April 12th, 2015

Discoveries

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Announcements

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Military

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Novel nanoparticles could save soldiers' lives after explosions April 15th, 2015

Taking aircraft manufacturing out of the oven: New technique uses carbon nanotube film to directly heat and cure composite materials April 14th, 2015

Environment

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

Water

Iranian Scientists Produce Magnetic Recyclable Photocatalyst to Purify Polluted Water April 8th, 2015

Water makes wires even more nano: Rice University lab extends meniscus-mask process to make sub-10 nanometer paths April 6th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE