Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Breakthrough in sensing at the nanoscale

Abstract:
Researchers have made a breakthrough discovery in identifying the world's most sensitive nanoparticle and measuring it from a distance using light. These super-bright, photostable and background-free nanocrystals enable a new approach to highly advanced sensing technologies using optical fibres.

Breakthrough in sensing at the nanoscale

Adelaide, Australia | Posted on September 1st, 2013

This discovery, by a team of researchers from Macquarie University, the University of Adelaide, and Peking University, opens the way for rapid localisation and measurement of cells within a living environment at the nanoscale, such as the changes to a single living cell in the human body in response to chemical signals.

Published in Nature Nanotechnology today, the research outlines a new approach to advanced sensing that has been facilitated by bringing together a specific form of nanocrystal, or "SuperDot™" with a special kind of optical fibre that enables light to interact with tiny (nanoscale) volumes of liquid.

"Up until now, measuring a single nanoparticle would have required placing it inside a very bulky and expensive microscope," says Professor Tanya Monro, Director of the University of Adelaide's Institute for Photonics and Advanced Sensing (IPAS) and ARC Australian Laureate Fellow. "For the first time, we've been able to detect a single nanoparticle at one end of an optical fibre from the other end. That opens up all sorts of possibilities in sensing."

"Using optical fibres we can get to many places such as inside the living human brain, next to a developing embryo, or within an artery ‒ locations that are inaccessible to conventional measurement tools.

"This advance ultimately paves the way to breakthroughs in medical treatment. For example, measuring a cell's reaction in real time to a cancer drug means doctors could tell at the time treatment is being delivered whether or not a person is responding to the therapy."

The performance of sensing at single molecular level had previously been limited by both insufficient signal strength and interference from background noise. The special optical fibre engineered at IPAS also proved useful in understanding the properties of nanoparticles. "Material scientists have faced a huge challenge in increasing the brightness of nanocrystals," says Dr. Jin, ARC Fellow at Macquarie University's Advanced Cytometry Laboratories. "Using these optical fibres, however, we have been given unprecedented insight into the light emissions. Now, thousands of emitters can be incorporated into a single SuperDot™ - creating a far brighter, and more easily detectable nanocrystal."

Under infrared illumination, these SuperDots™ selectively produce bright blue, red and infrared light, with a staggering thousand times more sensitivity than existing materials. "Neither the glass of the optical fibre nor other background biological molecules respond to infrared, so that removed the background signal issue. By exciting these SuperDots™ we were able to lower the detection limit to the ultimate level - a single nanoparticle," says Jin.

"The trans-disciplinary research from multiple institutions has paved the way for this innovative discovery," says Jin, "with the interface of experts in nanomaterials, photonics engineering, and biomolecular frontiers."

"These joint efforts will ultimately benefit patients around the world - for example, our industry partners Minomic International Ltd and Patrys Ltd are developing uses for SuperDots™ in cancer diagnostic kits, detecting incredibly low numbers of biomarkers within conditions like prostate and multiple myeloma cancer." Macquarie is now actively seeking other industrial partners with the capacity to jointly develop solutions outside of these fields.

####

For more information, please click here

Contacts:
Dr Dayong Jin (email)
Senior Lecturer, Advanced
Cytometry Laboratories
Macquarie University
Business: +61 9850 4168
Mobile: +61 433 875 470

Professor Tanya Monro (email)
website
Director, Institute for Photonics & Advanced Sensing
School of Chemistry and Physics
The University of Adelaide
Business: +61 8 8303 3955
Mobile: 0400 649 369

Ms Robyn Mills (email)
Media and Communications Officer
The University of Adelaide
Business: +61 8 8313 6341
Mobile: +61 410 689 084

For queries about the SuperDotTM technology:
Joanna Wheatley (email)
Media Manager
Macquarie University
Business: +61 2 9850 1039

Copyright © University of Adelaide

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project