Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ORNL-grown oxygen ‘sponge’ presents path to better catalysts, energy materials

This schematic depicts a new ORNL-developed material that can easily absorb or shed oxygen atoms.
This schematic depicts a new ORNL-developed material that can easily absorb or shed oxygen atoms.

Abstract:
Scientists at the Department of Energy's Oak Ridge National Laboratory have developed a new oxygen "sponge" that can easily absorb or shed oxygen atoms at low temperatures. Materials with these novel characteristics would be useful in devices such as rechargeable batteries, sensors, gas converters and fuel cells.

ORNL-grown oxygen ‘sponge’ presents path to better catalysts, energy materials

Oak Ridge, TN | Posted on August 28th, 2013

Materials containing atoms that can switch back and forth between multiple oxidation states are technologically important but very rare in nature, says ORNL's Ho Nyung Lee, who led the international research team that published its findings in Nature Materials.

"Typically, most elements have a stable oxidation state, and they want to stay there," Lee said. "So far there aren't many known materials in which atoms are easily convertible between different valence states. We've found a chemical substance that can reversibly change between phases at rather low temperatures without deteriorating, which is a very intriguing phenomenon."

Many energy storage and sensor devices rely on this valence-switching trick, known as a reduction-oxidation or "redox" reaction. For instance, catalytic gas converters use platinum-based metals to transform harmful emissions such as carbon monoxide into nontoxic gases by adding oxygen. Less expensive oxide-based alternatives to platinum usually require very high temperatures -- at least 600 to 700 degrees Celsius -- to trigger the redox reactions, making such materials impractical in conventional applications.

"We show that our multivalent oxygen sponges can undergo such a redox process at as low as 200 degrees Celsius, which is comparable to the working temperature of noble metal catalysts," Lee said. "Granted, our material is not coming to your car tomorrow, but this discovery shows that multivalent oxides can play a pivotal role in future energy technologies."

The team's material consists of strontium cobaltite, which is known to occur in a preferred crystalline form called brownmillerite. Through an epitaxial stabilization process, the ORNL-led team discovered a new recipe to synthesize the material in a more desirable phase known as perovskite. The researchers have filed an invention disclosure on their findings.

"These two phases have very distinct physical properties," Lee said. "One is a metal, the other is an insulator. One responds to magnetic fields, the other does not -- and we can make it switch back and forth within a second at significantly reduced temperatures."

The international team's design and testing of this novel advanced material from scratch required multidisciplinary expertise and sophisticated tools from such places as Argonne National Laboratory and ORNL, including Argonne's Advanced Photon Source and ORNL's Center for Nanophase Materials Science, says Lee.

"As we showed in this study, only through the study of a well-defined system can we build a framework for the design of next generation energy materials," said coauthor John Freeland of Argonne. "This insight was made possible by merging the capabilities at Oak Ridge and Argonne national labs for advanced synthesis and characterization of novel materials."

The study, "Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge," involved ORNL's Hyoungjeen Jeen, Woo Seok Choi, Matthew Chisholm, Michael Biegalski and Dongwon Shin; Argonne's Chad Folkman, I-Cheng Tung, Dillon Fong and John Freeland; and Hokkaido University's Hiromichi Ohta.

The work was supported by DOE's Office of Science.

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy's Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit the user facilities directory.

The Center for Nanophase Materials Science is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit science.energy.gov.

####

About DOE/Oak Ridge National Laboratory
ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Morgan McCorkle

865-574-7308

Copyright © DOE/Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Laboratories

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Chemistry

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Nano-level lubricant tuning improves material for electronic devices and surface coatings February 11th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Sensors

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Discoveries

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Announcements

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Energy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Fuel Cells

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project