Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ‘Groovy’ hologram creates strange state of light at visible and invisible wavelengths: Nanostructured device controls the intensity, phase, and polarization of light for wide applications in optics

A new three-in-one optical element can control light’s amplitude, phase, and polarization through a wedding of old-fashioned holograms and state-of-the-art nanoscale features.Image courtesy of Federico Capasso.
A new three-in-one optical element can control light’s amplitude, phase, and polarization through a wedding of old-fashioned holograms and state-of-the-art nanoscale features.

Image courtesy of Federico Capasso.

Abstract:
Applied physicists at the Harvard School of Engineering and Applied Sciences (SEAS) have demonstrated that they can change the intensity, phase, and polarization of light rays using a hologram-like design decorated with nanoscale structures.

‘Groovy’ hologram creates strange state of light at visible and invisible wavelengths: Nanostructured device controls the intensity, phase, and polarization of light for wide applications in optics

Cambridge, MA | Posted on August 20th, 2013

As a proof of principle, the researchers have used it to create an unusual state of light called a radially polarized beam, which—because it can be focused very tightly—is important for applications like high-resolution lithography and for trapping and manipulating tiny particles like viruses.

This is the first time a single, simple device has been designed to control these three major properties of light at once. (Phase describes how two waves interfere to either strengthen or cancel each other, depending on how their crests and troughs overlap; polarization describes the direction of light vibrations; and the intensity is the brightness.)

"Our lab works on using nanotechnology to play with light," says Patrice Genevet, a research associate at Harvard SEAS and co-lead author of a paper published this month in Nano Letters. "In this research, we've used holography in a novel way, incorporating cutting-edge nanotechnology in the form of subwavelength structures at a scale of just tens of nanometers." One nanometer equals one billionth of a meter.

Genevet works in the laboratory of Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at Harvard SEAS. Capasso's research group in recent years has focused on nanophotonics—the manipulation of light at the nanometer scale—with the goal of creating new light beams and special effects that arise from the interaction of light with nanostructured materials.

Using these novel nanostructured holograms, the Harvard researchers have converted conventional, circularly polarized laser light into radially polarized beams at wavelengths spanning the technologically important visible and near-infrared light spectrum.

"When light is radially polarized, its electromagnetic vibrations oscillate inward and outward from the center of the beam like the spokes of a wheel," explains Capasso. "This unusual beam manifests itself as a very intense ring of light with a dark spot in the center."

"It is noteworthy," Capasso points out, "that the same nanostructured holographic plate can be used to create radially polarized light at so many different wavelengths. Radially polarized light can be focused much more tightly than conventionally polarized light, thus enabling many potential applications in microscopy and nanoparticle manipulation."

The new device resembles a normal hologram grating with an additional, nanostructured pattern carved into it. Visible light, which has a wavelength in the hundreds of nanometers, interacts differently with apertures textured on the ‘nano' scale than with those on the scale of micrometers or larger. By exploiting these behaviors, the modular interface can bend incoming light to adjust its intensity, phase, and polarization.

Holograms, beyond being a staple of science-fiction universes, find many applications in security, like the holographic panels on credit cards and passports, and new digital hologram-based data-storage methods are currently being designed to potentially replace current systems. Achieving fine-tuned control of light is critical to advancing these technologies.

"Now, you can control everything you need with just a single interface," says Genevet, pointing out that the polarization effect the new interface has on light could formerly only be achieved by a cascade of several different optical elements. "We're gaining a big advantage in terms of saving space."

The demonstration of this nanostructured hologram has become possible only recently with the development of more powerful software and higher resolution nanofabrication technologies.

The underlying design is more complex than a simple superposition of nanostructures onto the hologram. The phase and polarization of light closely interact, so the structures must be designed with both outcomes in mind, using modern computational tools.

Further research will aim to make more complex polarized holograms and to optimize the output efficiency of the device.

Genevet's and Capasso's collaborators included co-lead author Jiao Lin, a former SEAS postdoctoral fellow who is now at the Singapore Institute of Manufacturing Technology; Mikhail Kats, a graduate student at Harvard SEAS; and Nicholas Antoniou, principal focused ion beam engineer at the Center for Nanoscale Systems at Harvard University.

This research was supported in part by the Air Force Office of Scientific Research (FA9550-12-1-0289); the National Science Foundation (NSF), through a Graduate Research Fellowship; and the Agency for Science, Technology and Research (A*STAR) in Singapore. Device fabrication was carried out at the Center for Nanoscale Systems at Harvard University, which is a member of the NSF-supported National Nanotechnology Infrastructure Network (ECS-0335765).

####

For more information, please click here

Contacts:
Caroline Perry

617-496-1351

Copyright © Harvard School of Engineering and Applied Sciences (SEAS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Software

Leti Launches Emulator Service to Boost ROI and Speed Time to Market for European Chipmakers: Anchored by Mentor Veloce Emulator Machine, Leti’s Offer Includes Support for Design, Debug and Analysis of Results August 31st, 2017

Technology Companies Join Forces for TEM Imaging and Analysis August 3rd, 2017

Nanometrics Introduces SpectraProbe Analysis Software: Advanced software and algorithms enhancing Nanometrics metrology fleet capabilities fab-wide July 13th, 2017

Nanometrics Releases NanoDiffract 4: Latest software extends process control capabilities for advanced 3D devices July 11th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Discoveries

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Tools

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Military

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Photonics/Optics/Lasers

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project