Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Cosmology in the lab using laser-cooled ions: Taking a look back at the beginning of our universe: QUEST researchers at PTB generate and investigate symmetry breaking in ion Coulomb crystals

The picture shows ytterbium ions in an ion Coulomb crystal, taken with an EMCCD camera (electron multiplying CCD camera). The ionized atoms fluoresce in the laser light; the distance between the ions is approx. 10µm to 20 µm. (a) Radial symmetry: At a high radial trap enclosure, the ionized atoms line up like a string of pearls. The radial potential felt by the positively charged particles is depicted at the bottom left. (b) Mirror symmetry: If the strength of the radial enclosure changes, the ions become free to avoid each other, and the crystal adopts a new, energetically more favourable structure. Hereby, two energetically equivalent configurations can be chosen from. Areas which do not communicate with each other decide independently of each other on a new orientation. Topological defects occur where two areas which have made different "decisions" collide. The black-and-white images show fluorescing ytterbium ions.
Credit: PTB
The picture shows ytterbium ions in an ion Coulomb crystal, taken with an EMCCD camera (electron multiplying CCD camera). The ionized atoms fluoresce in the laser light; the distance between the ions is approx. 10µm to 20 µm. (a) Radial symmetry: At a high radial trap enclosure, the ionized atoms line up like a string of pearls. The radial potential felt by the positively charged particles is depicted at the bottom left. (b) Mirror symmetry: If the strength of the radial enclosure changes, the ions become free to avoid each other, and the crystal adopts a new, energetically more favourable structure. Hereby, two energetically equivalent configurations can be chosen from. Areas which do not communicate with each other decide independently of each other on a new orientation. Topological defects occur where two areas which have made different "decisions" collide. The black-and-white images show fluorescing ytterbium ions.

Credit: PTB

Abstract:
Scientists would love to know which forces created our universe some 14 billion years ago. How could - due to a breaking of symmetry - matter, and thus stars and galaxies, be created from an originally symmetrical universe in which the same conditions prevailed everywhere shortly after the Big Bang. Now, the Big Bang is an experiment that cannot be repeated. But the principle of symmetry and its disturbance can definitely be investigated under controlled laboratory conditions. For this purpose, scientists from the Excellence Cluster QUEST* at the Physikalisch-Technische Bundesanstalt (PTB) used laser-cooled ions in so-called "ion Coulomb crystals". They were able to show for the first time how symmetry breaking can be generated in a controlled manner and how the occurrence of defects can then be observed. Realizing these so-called "topographical defects" within a well-controlled system opens up new possibilities when it comes to investigating quantum phase transitions and looking in detail into the non-equilibrium dynamics of complex systems. The results have been published in the current issue of the scientific journal "Nature Communications".

Cosmology in the lab using laser-cooled ions: Taking a look back at the beginning of our universe: QUEST researchers at PTB generate and investigate symmetry breaking in ion Coulomb crystals

Braunschweig, Germany | Posted on August 12th, 2013

Within the scope of an international cooperation with colleagues from the Los Alamos National Lab (USA), from the University of Ulm (Germany) and from the Hebrew University (Israel), PTB researchers have now, for the first time, succeeded in demonstrating topological defects in an atomic-optical experiment in the laboratory. Topological defects are errors in the spatial structure which are caused by the breaking of the symmetry when particles of a system cannot communicate with each other. They form during a phase transition and present themselves as non-matching areas (Fig. 1). For their activities, the scientists used the symmetry properties of ion Coulomb crystals which are comparable to those of the early universe.

The experimental challenge for the researchers working with Tanja Mehlstäubler consisted in being able to control a complex multi-particle system and to induce an intentional change in the external conditions to obtain the symmetry breaking. This was achieved by means of ytterbium ions which were trapped in so-called "radio-frequency ion traps" in ultra-high vacuum and were cooled down to a few millikelvin with the aid of laser light. The trapped, positively charged particles repel each other inside the trap and, at such ultra-low temperatures, take on a crystalline structure (Fig. 2, a-c). Precise ion traps which were developed for metrological applications hereby allow a great control of the ultra-cold particles and of the ambient parameters.

If the parameters of the trap enclosure are varied faster than the speed of sound in the crystal, then topological defects occur (Fig. 2, d-e) while the ions are seeking a new equilibrium condition in the crystal. The stability of these effects was investigated and optimized by means of numerical simulations. This provides an ideal system to investigate the physical properties of symmetry-breaking transitions with the highest sensitivity. Thereby, the spontaneous re-orientation of the Coulomb crystal follows the same rules as those describing the early universe after the Big Bang.

The researchers' work is closely related to the so-called Kibble-Zurek mechanism established by Tom Kibble and Wojciech Zurek. This theory was based on Kibble's thoughts about special topological defects in the early universe: fractions of seconds after the Big Bang, a symmetry breaking took place, and the young universe had to "decide" which new state to adopt. Everywhere where individual areas of the universe could not communicate their decisions to each other, topological defects such as, e.g., cosmological strings and domain walls may have been created. But the Kibble-Zurek mechanism also allows statistic statements on the occurrence of defects in phase transitions in general. Due to its universal character, this theory is applicable to many fields of physics such as, e.g., the observation of the transition from metals to superconductors or the transition from ferromagnetic to paramagnetic systems.

With its work, the international group of researchers has now shown that the Kibble-Zurek mechanism can be transferred to the relatively simple laboratory system with laser-cooled ion Coulomb crystals, and they have demonstrated that the occurring topological defects depend on the speed at which the changes occur. Related experiments which were run simultaneously at the Johannes Gutenberg University Mainz (JGU) led to similar results.

The new system now demonstrated will soon allow further experiments on phase transitions in classical systems and in the quantum universe as well as tests in the field of nonlinear physics (e.g. solitons) to be performed in a well-controlled comparative system. In doing so, the physicists have come one step closer to explaining causal relations in nature.

* QUEST: Centre for Quantum Engineering and Space-Time Research

####

For more information, please click here

Contacts:
Dr. Tanja E. Mehlstäubler
QUEST Institute
PTB
phone: +49 (0)151 57 13 28 66

Copyright © Physikalisch-Technische Bundesanstalt (PTB)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific publication:

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Physics

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Superconductivity

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Discoveries

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project