Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bubbles are the new lenses for nanoscale light beams

A nanoscale light beam modulated by short electromagnetic waves, known as surface plasmon polaritons -- labelled as SPP beam -- enters the bubble lens, officially known as a reconfigurable plasmofluidic lens. The bubble controls the light waves, while the grating provides further focus.

Credit: Tony Jun Huang, Penn State
A nanoscale light beam modulated by short electromagnetic waves, known as surface plasmon polaritons -- labelled as SPP beam -- enters the bubble lens, officially known as a reconfigurable plasmofluidic lens. The bubble controls the light waves, while the grating provides further focus.

Credit: Tony Jun Huang, Penn State

Abstract:
Bending light beams to your whim sounds like a job for a wizard or an a complex array of bulky mirrors, lenses and prisms, but a few tiny liquid bubbles may be all that is necessary to open the doors for next-generation, high-speed circuits and displays, according to Penn State researchers.

Bubbles are the new lenses for nanoscale light beams

University Park, PA | Posted on August 9th, 2013

To combine the speed of optical communication with the portability of electronic circuitry, researchers use nanoplasmonics -- devices that use short electromagnetic waves to modulate light on the nanometer scale, where conventional optics do not work. However, aiming and focusing this modulated light beam at desired targets is difficult.

"There are different solid-state devices to control (light beams), to switch them or modulate them, but the tenability and reconfigurability are very limited," said Tony Jun Huang, associate professor of engineering science and mechanics. "Using a bubble has a lot of advantages."

The main advantage of a bubble lens is just how quickly and easily researchers can reconfigure the bubble's location, size, and shape -- all of which affect the direction and focus of any light beam passing through it.

Huang's team created separate simulations of the light beams and bubble lens to predict their behaviors and optimize conditions before combining the two in the laboratory. They published their findings in Nature Communications.

To form the bubble lens, researchers used a low-intensity laser to heat water on a gold surface. The tiny bubble's optical behavior remains consistent as long as the laser's power and the environmental temperature stay constant.

Simply moving the laser or adjusting the laser's power can change how the bubble will deflect a light beam, either as a concentrated beam at a specific target or as a dispersed wave. Changing the liquid also affects how a light beam will refract.

The materials to form bubble lenses are inexpensive, and the bubbles themselves are easy to dissolve, replace and move.

"In addition to its unprecedented reconfigurability and tenability, our bubble lens has at least one more advantage over its solid-state counterparts: its natural smoothness," said Huang. "The smoother the lens is, the better quality of the light that pass through it."

Huang believes that the next step is to find out how the bubble's shape influences the direction of the light beam and the location of its focal point. Fine control over these light beams will enable improvements for on-chip biomedical devices and super resolution imaging.

"For all these applications, you really need to precisely control light in nanoscale, and that's where this work can be a very important component," said Huang.

Chenglong Zhao, postdoctoral fellow in engineering science and mechanics, Penn State, designed and conducted the experiment; Yongmin Liu, assistant professor of mechanical and industrial engineering, and electrical and computer engineering, Northeastern University, worked with Nicholas Fang, associate professor of mechanical engineering, MIT, to analyze the results and develop simulations; and Yanhui Zhao, graduate student in engineering science and mechanics, Penn State, fabricated the materials.

The National Institutes of Health, the National Science Foundation, and the Penn State Center for Nanoscale Science funded this study.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Display technology/LEDs/SS Lighting/OLEDs

Aledia, French Developer of Next-Generation MicroLED Displays For High-Volume Consumer Markets, Announces it Has Produced its First Nanowire Chips on 300mm Silicon Wafers Using CEA-Leti Pilot Lines: Company will produce microLEDs on both 200mm and 300mm silicon wafers December 15th, 2020

An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

Breakthrough quantum-dot transistors create a flexible alternative to conventional electronics: Quantum dot logic circuits provide the long-sought building blocks for innovative devices, including printable electronics, flexible displays, and medical diagnostics October 30th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Chip Technology

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Discoveries

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Announcements

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Photonics/Optics/Lasers

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Stretching diamond for next-generation microelectronics January 5th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project