Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Battery design gets boost from aligned carbon nanotubes

A sheet of aligned carbon nanotubes is rolled on a cylinder. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
A sheet of aligned carbon nanotubes is rolled on a cylinder.

Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

Abstract:
"Aligned Carbon Nanotube-Silicon Sheets: A Novel Nano-architecture for Flexible Lithium Ion Battery Electrodes"

Published: Online Aug. 1 in Advanced Materials

Authors: Kun Fu, Ozkan Yildiz, Hardik Bhanushali, Yongxin Wang, Kelly Stano, Leigang Xue, Ziangwu Zhang, and Philip D. Bradford

Abstract: In the pursuit of high performance lithium ion batteries (LIBs), significant effort has been expended to explore high performance cathode and anode materials. Silicon has the greatest lithium storage capacity per unit mass, and is therefore one of the most promising potential candidates to replace graphite as the anode material in future generations of batteries. The main challenge in utilizing silicon comes from the structural failure induced by its large volume change (>300%) during electrochemical cycling, leading to capacity loss. New designs, in which silicon and carbon can act in a mutually beneficial way, so that silicon can fully contribute to the capacity while maintaining cyclic stability, are needed. With this in mind, this communication describes novel, binder-free, thin sheet anodes for LIBs using aligned carbon nanotube (CNT) based silicon films which were processed in a way that is conducive to future commercial production. The horizontal super-aligned CNT sheets provided high surface area and a porous structure to facilitate both the uniform chemical vapor deposition of silicon during fabrication and the electrochemical kinetics between the silicon and the electrolyte during use. The CNT-based silicon composite sheets had both high specific energy capacity and stable cycle performance. This work also revealed an interesting new mechanism of deformation for silicon coated CNT structures after electrochemical cycling. A spring-like deformation behavior of the aligned CNTs helped to explain the electrochemical stability of the crystalline silicon coatings. These findings will guide future work to optimize this unique nano-architecture for further increases in energy density and stability. This aligned CNT scaffold design may be extended to other anode and cathode materials utilized in thin and flexible LIBs.

Battery design gets boost from aligned carbon nanotubes

Raleigh, NC | Posted on August 8th, 2013

Researchers at North Carolina State University have created a new flexible nano-scaffold for rechargeable lithium ion batteries that could help make cell phone and electric car batteries last longer.

The research, published online in Advanced Materials, shows the potential of manufactured sheets of aligned carbon nanotubes coated with silicon, a material with a much higher energy storage capacity than the graphite composites typically used in lithium ion batteries.

"Putting silicon into batteries can produce a huge increase in capacity—10 times greater," said Dr. Philip Bradford, assistant professor of textile engineering, chemistry and science at NC State. "But adding silicon can also create 10 times the problems."

One significant challenge in using silicon is that it swells as lithium ion batteries discharge. As the batteries cycle, silicon can break off from the electrode and float around (known as pulverization) instead of staying in place, making batteries less stable.

When the silicon-coated carbon nanotubes were aligned in one direction like a layer of drinking straws laid end to end, the structure allowed for controlled expansion so that the silicon is less prone to pulverization, said Xiangwu Zhang, associate professor of textile engineering, chemistry and science at NC State.

"There's a huge demand for batteries for cell phones and electric vehicles, which need higher energy capacity for longer driving distances between charges," Zhang said. "We believe this carbon nanotube scaffolding potentially has the ability to change the industry, although technical aspects will have to be worked out. The manufacturing process we're using is scalable and could work well in commercial production."

The research was supported by the Donors to the American Chemical Society Petroleum Research Fund.

####

For more information, please click here

Contacts:
Dr. Philip Bradford

919-515-1866

D'Lyn Ford
News Services

919.513.4798

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Nanotubes/Buckyballs/Fullerenes

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Discoveries

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Announcements

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Automotive/Transportation

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics' January 28th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project