Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Battery design gets boost from aligned carbon nanotubes

A sheet of aligned carbon nanotubes is rolled on a cylinder. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
A sheet of aligned carbon nanotubes is rolled on a cylinder.

Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

Abstract:
"Aligned Carbon Nanotube-Silicon Sheets: A Novel Nano-architecture for Flexible Lithium Ion Battery Electrodes"

Published: Online Aug. 1 in Advanced Materials

Authors: Kun Fu, Ozkan Yildiz, Hardik Bhanushali, Yongxin Wang, Kelly Stano, Leigang Xue, Ziangwu Zhang, and Philip D. Bradford

Abstract: In the pursuit of high performance lithium ion batteries (LIBs), significant effort has been expended to explore high performance cathode and anode materials. Silicon has the greatest lithium storage capacity per unit mass, and is therefore one of the most promising potential candidates to replace graphite as the anode material in future generations of batteries. The main challenge in utilizing silicon comes from the structural failure induced by its large volume change (>300%) during electrochemical cycling, leading to capacity loss. New designs, in which silicon and carbon can act in a mutually beneficial way, so that silicon can fully contribute to the capacity while maintaining cyclic stability, are needed. With this in mind, this communication describes novel, binder-free, thin sheet anodes for LIBs using aligned carbon nanotube (CNT) based silicon films which were processed in a way that is conducive to future commercial production. The horizontal super-aligned CNT sheets provided high surface area and a porous structure to facilitate both the uniform chemical vapor deposition of silicon during fabrication and the electrochemical kinetics between the silicon and the electrolyte during use. The CNT-based silicon composite sheets had both high specific energy capacity and stable cycle performance. This work also revealed an interesting new mechanism of deformation for silicon coated CNT structures after electrochemical cycling. A spring-like deformation behavior of the aligned CNTs helped to explain the electrochemical stability of the crystalline silicon coatings. These findings will guide future work to optimize this unique nano-architecture for further increases in energy density and stability. This aligned CNT scaffold design may be extended to other anode and cathode materials utilized in thin and flexible LIBs.

Battery design gets boost from aligned carbon nanotubes

Raleigh, NC | Posted on August 8th, 2013

Researchers at North Carolina State University have created a new flexible nano-scaffold for rechargeable lithium ion batteries that could help make cell phone and electric car batteries last longer.

The research, published online in Advanced Materials, shows the potential of manufactured sheets of aligned carbon nanotubes coated with silicon, a material with a much higher energy storage capacity than the graphite composites typically used in lithium ion batteries.

"Putting silicon into batteries can produce a huge increase in capacity—10 times greater," said Dr. Philip Bradford, assistant professor of textile engineering, chemistry and science at NC State. "But adding silicon can also create 10 times the problems."

One significant challenge in using silicon is that it swells as lithium ion batteries discharge. As the batteries cycle, silicon can break off from the electrode and float around (known as pulverization) instead of staying in place, making batteries less stable.

When the silicon-coated carbon nanotubes were aligned in one direction like a layer of drinking straws laid end to end, the structure allowed for controlled expansion so that the silicon is less prone to pulverization, said Xiangwu Zhang, associate professor of textile engineering, chemistry and science at NC State.

"There's a huge demand for batteries for cell phones and electric vehicles, which need higher energy capacity for longer driving distances between charges," Zhang said. "We believe this carbon nanotube scaffolding potentially has the ability to change the industry, although technical aspects will have to be worked out. The manufacturing process we're using is scalable and could work well in commercial production."

The research was supported by the Donors to the American Chemical Society Petroleum Research Fund.

####

For more information, please click here

Contacts:
Dr. Philip Bradford

919-515-1866

D'Lyn Ford
News Services

919.513.4798

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Nanotubes/Buckyballs/Fullerenes

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Automotive/Transportation

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

Penn and UC Merced researchers match physical and virtual atomic friction experiments May 8th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Evident Thermoelectrics Acquires GMZ Energy: Investment Accelerates Launch Of Evident's Thermoelectric Modules For Waste Heat May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

Pixelligent Technologies Announces $1M Phase-II OLED Lighting Award From the US Department of Energy May 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project