Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > VCU Physicists Discover Theoretical Possibility of Large, Hollow Magnetic Cage Molecules: New molecules could be larger than the original Buckminster fullerene with potential applications in technology and health care

Illustration depicts a Mn24C18 cluster carrying a magnetic moment of 70 Bohr magnetons. Image courtesy of Menghao Wu, Ph.D./VCU.
Illustration depicts a Mn24C18 cluster carrying a magnetic moment of 70 Bohr magnetons.

Image courtesy of Menghao Wu, Ph.D./VCU.

Abstract:
Virginia Commonwealth University researchers have discovered, in theory, the possibility of creating large, hollow magnetic cage molecules that could one day be used in medicine as a drug delivery system to non-invasively treat tumors, and in other emerging technologies.

VCU Physicists Discover Theoretical Possibility of Large, Hollow Magnetic Cage Molecules: New molecules could be larger than the original Buckminster fullerene with potential applications in technology and health care

Richmond, VA | Posted on July 31st, 2013

Approximately 25 years ago, scientists first made the discovery of C60 fullerene - better known as the Buckminster Fullerene - a molecule composed of 60 carbon molecules that formed a hollow cage. Due to its unique hollow cage structure the molecule offers serious technological potential because it could hold other atoms or small molecules inside, and therefore, be used in applications such as drug delivery.

That potential has since spurred worldwide interest among scientists who have been searching for similar molecules. Although some hollow cage structures have been found, none of them is magnetic. Magnetic properties of the structure are of particular interest because a hollow magnetic structure carrying an embedded atom or molecule can be guided by an external magnetic field and may serve as an effective vehicle for targeted drug delivery.

In a new study, published online on July 22 in The Journal of Chemical Physics, two VCU scientists employing state-of-the-art theoretical methods show that magnetic hollow cages larger than the original C60 fullerene that carry giant magnetic moments are possible. A magnetic moment refers to the measure of the magnetic strength of a cluster.

An illustration of the VCU discovery also is featured on the cover of the July 28 print issue of the journal.

"The potential benefit of this finding is that it provides a route to the synthesis of molecular magnets with colossal magnetic moments," said co-lead investigator Puru Jena, Ph.D., distinguished professor of physics in the VCU College of Humanities and Sciences. Jena collaborated with Menghao Wu, Ph.D., co-author of the paper and a postdoctoral scholar in the VCU Department of Physics.

"These molecules can be used for targeted non-invasive drug delivery. When assembled, the molecules can also form new high strength magnets for device application," Jena said.

According to Jena, the pair of VCU researchers demonstrated the magnetic moment of the molecule by focusing on hetero-atomic clusters consisting of transition metal atoms such as cobalt (Co) and manganese (Mn) and carbon (C) atoms. In particular, Co12C6, Mn12C6, and Mn24C18 clusters consisting of 12 cobalt and six carbon atoms, 12 manganese and six carbon atoms, and 24 manganese and 18 carbon atoms, respectively, carry magnetic moments as large as 14, 38 and 70 Bohr magnetons. In comparison, the magnetic moment of an iron (Fe) atom in crystalline iron is 2.2 Bohr magnetons.

According to Jena, the team is still early in its discovery process.

"There is a long way to go. Experiments first have to be carried out to prove the predictions of our theory," said Jena.

"Ways must be found to synthesize large quantities of these molecules and study their magnetic properties once they are assembled. Finally, these molecules need to be functionalized by embedding desired atoms/molecules for practical applications."

This research was supported in part by the U.S. Department of Energy grant number DE-FG02-96ER45579.

####

About Virginia Commonwealth University
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 223 degree and certificate programs in the arts, sciences and humanities. Sixty-eight of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University comprise the VCU Medical Center, one of the nation’s leading academic medical centers.

For more information, please click here

Contacts:
Sathya Achia Abraham

804-828-1231

Copyright © Virginia Commonwealth University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study is titled, “Magnetic hollow cages with colossal moments.”:

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Discoveries

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE