Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles, made to order — inside and out: New research enables high-speed customization of novel nanoparticles for drug delivery and other uses

Researchers at MIT and the University of North Carolina created these coated nanoparticles in many shapes and sizes.
Image: Kevin E. Shopsowitz and Stephen W. Morton
Researchers at MIT and the University of North Carolina created these coated nanoparticles in many shapes and sizes. Image: Kevin E. Shopsowitz and Stephen W. Morton

Abstract:
A new coating technology developed at MIT, combined with a novel nanoparticle-manufacturing technology developed at the University of North Carolina at Chapel Hill, may offer scientists a way to quickly mass-produce tailored nanoparticles that are specially coated for specific applications, including medicines and electronics.

Nanoparticles, made to order — inside and out: New research enables high-speed customization of novel nanoparticles for drug delivery and other uses

Cambridge, MA | Posted on July 5th, 2013

Using this new combination of the two existing technologies, scientists can produce very small, uniform particles with customized layers of material that can carry drugs or other molecules to interact with their environment, or even target specific types of cells.

Creating highly reproducible batches of precisely engineered, coated nanoparticles is important for the safe manufacture of drugs and obtaining regulatory approval, says Paula Hammond, the David H. Koch Professor in Chemical Engineering at MIT and a member of MIT's Koch Institute for Integrative Cancer Research.

"Everyone's excited about nanomedicine's potential, and there are some systems that are making it out to market, but people are also concerned about how reproducible each batch is. That's especially critical for applications such as cancer therapies," Hammond says. "Fortunately, we have combined two technologies that are at the forefront of addressing these issues and that show great promise for the future of nanomanufacturing."

Hammond and Joseph DeSimone, the Chancellor's Eminent Professor of Chemistry at UNC and the William R. Kenan Jr. Distinguished Professor of Chemical Engineering at North Carolina State University, are the senior authors of a paper describing the technology in the July 1 online edition of Advanced Materials. Lead author of the paper is Stephen Morton, a graduate student in Hammond's lab.

‘A very versatile platform'

Hammond's lab previously developed a layer-by-layer deposition technique for coating nanoparticle surfaces with alternating layers of drugs, RNA, proteins or other molecules of interest. Those coatings can also be designed to protect nanoparticles from being destroyed by the body's immune system before reaching their intended targets.

"It's a very versatile platform for incorporating therapeutics," Hammond says.

However, the layer-by-layer application processes commonly used today to coat nanoparticles take too long to be useful for rapid, large-scale manufacture: For each layer, the particles must be soaked in a solution of the coating material, then spun in a centrifuge to remove excess coating. Applying each layer takes about an hour.

In the new study, the MIT researchers used a spray-based technique, which allows them to apply each layer in just a few seconds. This technology was previously developed in the Hammond lab and is now being commercialized by Svaya Nanotechnologies.

Hammond combined this approach with a nanoparticle-manufacturing technology known as the PRINT (Particle Replication In Non-wetting Templates) platform, which was developed in the DeSimone lab at UNC and is now being commercialized by Liquidia Technologies. Liquidia focuses on using the PRINT platform to create novel nanotechnology-based health-care products, vaccines and therapeutics.

The PRINT platform is a continuous roll-to-roll particle-molding technology that enables the design and mass production of precisely engineered particles of controlled size, shape and chemical composition. To make particles like the ones used in this study, a mixture of polymers and drug molecules (or other payload) is applied to a large roll of film that consists of a nano-sized mold containing features of the desired shape and size. The mixture fills every feature of the mold and solidifies to create billions of nanoparticles. Particles are removed from the mold using another roll of adhesive film, which can then be sprayed with layers of specialized coatings using Hammond's novel technology and separated into individual particles.

"The idea was to put these two industrial-scale processes together and create a sophisticated, beautifully coated nanoparticle, in the same way that bakeries glaze your favorite donut on the conveyor belt," Hammond says.

"The combination of PRINT and spray layer-by-layer provides a versatile platform for rapidly modifying the surface chemistry of particles," says Frank Caruso, a professor of chemical and biomolecular engineering at the University of Melbourne who was not part of the research team. "This approach also holds promise for high throughput in the development of particle-delivery systems for nanomedicine applications."

Multiple functions

This new process promises to yield large quantities of coated nanoparticles while dramatically reducing production time. It also allows for custom design of a wide variety of materials, both in the nanoparticle core and in the coating, for applications including electronics, drug delivery, vaccines, wound healing or imaging, Morton says.

"Both the PRINT and layer-by-layer technologies allow for incorporation of many different materials that have unique properties to make systems with multiple built-in functions," he says.

To demonstrate the potential usefulness of this technique, the researchers created particles coated with hyaluronic acid, which has been shown to target proteins, called CD44 receptors, that are found in high levels on aggressive cancer cells. They found that breast cancer cells grown in the lab engulf particles coated with layers of hyaluronic acid much more efficiently than particles without the coatings or with coatings not containing hyaluronic acid.

In follow-up studies, the researchers plan to design particles containing cancer drugs and cancer-fighting coatings to see if they can effectively shrink tumors. Some of those particles may include combinations, such as two different chemotherapy drugs, or a drug combined with RNA molecules that target cancerous genes. These combinations can work together in a synergistic fashion to selectively disarm and kill cancer cells.

The research was funded by the NIH-funded Centers for Cancer Nanotechnology Excellence at MIT and UNC, a National Science Foundation graduate research fellowship, and a National Sciences and Engineering Research Council postdoctoral fellowship.

####

For more information, please click here

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Govt.-Legislation/Regulation/Funding/Policy

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Researchers find new way to control light with electric fields May 25th, 2017

Chip Technology

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Nanomedicine

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Nanoelectronics

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Discoveries

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Materials/Metamaterials

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Industrial

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Research partnerships

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project