Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Improved synthesis of graphene oxide and its application to nanocomposites

Fig. 1. Promising applications of graphene oxide
Fig. 1. Promising applications of graphene oxide

Abstract:
Research Core for Interdisciplinary Sciences
Assistant Professor, Yuta Nishina

We have developed a method for the rapid preparation of graphene oxide (GO)—a strategically important material for future technology (Fig.1).

The most common method for synthesizing GO is the Hummers' method (oxidation with KMnO4 and NaNO3 in concentrated H2SO4), which requires a long reaction time and large amounts of reagents. In our research found that the microwave irradiation of natural graphite flakes before the oxidation step improved the efficiency of the oxidation process. This facile method provides a greater amount of GO compared with the original Hummers' method. We expect our rapid synthesis method based on microwave irradiation to make a major contribution to the large-scale production of GO.

Improved synthesis of graphene oxide and its application to nanocomposites

Okayama, Japan | Posted on June 20th, 2013

Patent information: Japanese patent No.5098064

Graphene is a promising support material for Pt nanoparticles, which triggered much interest in metal/graphene composites. In some cases, however, graphene-supported metal species are not preferred, because the interaction between the metal particles and graphene is quite weak due to the graphene itself is being relatively chemically inert due to the strong sp2 and π binding between carbon atoms in the graphene plane. Consequently, the metal nanoparticles are mobile on graphene, which leads to limited applications of metal/graphene composites. It has been proposed that defects or mechanical strain in graphene can significantly increase the chemical reactivity of graphene itself and also enhance the interaction between metal nanoparticles.

Therefore, GO offers significant advantages for the synthesis of composites with inorganic materials and organic polymers due to its large amounts of oxygen functionality. As an application of our GO, metal nanoparticles were supported on its surface. We succeeded to synthesize Pt, Pd, Rh, Ir, Cu, etc. nanoparticles on GO via solution processes. Controlling the degree of oxidation of GO and the oxidation state of metal species will offer a wide range of applications of metal/GO composites such as electrodes, fuel cell catalysts, and catalysts for chemical synthesis. We showed that the Pd/GO composite exhibited superior catalytic activity in selective hydrogenation and cross coupling reactions.

Japanese patent application No.2012-201088

####

About Okayama University
Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 14,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences. Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.

For more information, please click here

Contacts:
Okayama University
1-1-1 Tsushima-naka , Kita-ku ,
Okayama 700-8530, Japan
Planning and Public Information Division

Copyright © Okayama University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Assistant Professor Yuta Nishina website:

Related News Press

News and information

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Graphene/ Graphite

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Direct radiolabeling of nanomaterials: Directly radiolabeled nanographene materials without chelators are suitable for bioimaging applications February 9th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Materials/Metamaterials

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Announcements

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Patents/IP/Tech Transfer/Licensing

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project