Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbon nanotube harpoon catches individual brain-cell signals

This image, taken with a scanning electron microscope, shows a new brain electrode that tapers to a point as thick as a single carbon nanotube.

Credit: Credit: Inho Yoon and Bruce Donald, Duke.
This image, taken with a scanning electron microscope, shows a new brain electrode that tapers to a point as thick as a single carbon nanotube.

Credit: Credit: Inho Yoon and Bruce Donald, Duke.

Abstract:
Neuroscientists may soon be modern-day harpooners, snaring individual brain-cell signals instead of whales with tiny spears made of carbon nanotubes.

Carbon nanotube harpoon catches individual brain-cell signals

Durham, NC | Posted on June 20th, 2013

The new brain cell spear is a millimeter long, only a few nanometers wide and harnesses the superior electromechanical properties of carbon nanotubes to capture electrical signals from individual neurons.

"To our knowledge, this is the first time scientists have used carbon nanotubes to record signals from individual neurons, what we call intracellular recordings, in brain slices or intact brains of vertebrates," said Bruce Donald, a professor of computer science and biochemistry at Duke University who helped developed the probe.

He and his collaborators describe the carbon nanotube probes June 19 in PLOS ONE.

"The results are a good proof of principle that carbon nanotubes could be used for studying signals from individual nerve cells," said Duke neurobiologist Richard Mooney, a study co-author. "If the technology continues to develop, it could be quite helpful for studying the brain."

Scientists want to study signals from individual neurons and their interactions with other brain cells to better understand the computational complexity of the brain.

Currently, they use two main types of electrodes, metal and glass, to record signals from brain cells. Metal electrodes record spikes from a population of brain cells and work well in live animals. Glass electrodes also measure spikes, as well as the computations individual cells perform, but are delicate and break easily.

"The new carbon nanotubes combine the best features of both metal and glass electrodes. They record well both inside and outside brain cells, and they are quite flexible. Because they won't shatter, scientists could use them to record signals from individual brain cells of live animals," said Duke neurobiologist Michael Platt, who was not involved in the study.

In the past, other scientists have experimented with carbon nanotube probes. But the electrodes were thick, causing tissue damage, or they were short, limiting how far they could penetrate into brain tissue. They could not probe inside individual neurons.

To change this, Donald began working on a harpoon-like carbon-nanotube probe with Duke neurobiologist Richard Mooney five years ago. The two met during their first year at Yale in the 1976, kept in touch throughout graduate school and began meeting to talk about their research after they both came to Duke.

Mooney told Donald about his work recording brain signals from live zebra finches and mice. The work was challenging, he said, because the probes and machinery to do the studies were large and bulky on the small head of a mouse or bird.

With Donald's expertise in nanotechnology and robotics and Mooney's in neurobiology, the two thought they could work together to shrink the machinery and improve the probes with nano-materials.

To make the probe, graduate student Inho Yoon and Duke physicist Gleb Finkelstein used the tip of an electrochemically sharpened tungsten wire as the base and extended it with self-entangled multi-wall carbon nanotubes to create a millimeter-long rod. The scientists then sharpened the nanotubes into a tiny harpoon using a focused ion beam at North Carolina State University.

Yoon then took the nano-harpoon to Mooney's lab and jabbed it into slices of mouse brain tissue and then into the brains of anesthetized mice. The results show that the probe transmits brain signals as well as, and sometimes better than, conventional glass electrodes and is less likely to break off in the tissue. The new probe also penetrates individual neurons, recording the signals of a single cell rather than the nearest population of them.

Based on the results, the team has applied for a patent on the nano-harpoon. Platt said scientists might use the probes in a range of applications, from basic science to human brain-computer interfaces and brain prostheses.

Donald said the new probe makes advances in those directions, but the insulation layers, electrical recording abilities and geometry of the device still need improvement.

###

This research was supported by the Duke Institute for Brain Sciences, and grants from the National Institutes of Health (NS-79929, GM-65982, GM-78031).

Citation: "Intracellular neural recording with pure carbon nanotube probes." Yoon, I. et al. 2013. PLOS ONE. DOI: 10.1371/journal.pone.0065715

####

For more information, please click here

Contacts:
Ashley Yeager

919-681-8057

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Brain-Computer Interfaces

On the frontiers of cyborg science August 10th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Noninvasive brain control: New light-sensitive protein enables simpler, more powerful optogenetics June 30th, 2014

Stanford scientists create circuit board modeled on the human brain April 28th, 2014

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Nanotubes/Buckyballs

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Carbon Nanotubes Increase Efficiency of Solar Cells January 12th, 2015

Iran Stands 7th in World's Nano-Tech Papers January 5th, 2015

Nanomedicine

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

A spoonful of sugar in silver nanoparticles to regulate their toxicity January 21st, 2015

Discoveries

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Announcements

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Patents/IP/Tech Transfer/Licensing

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Liquipel Receives US Patent on Environmentally Friendly, Watersafe Treatment of Electronics: U.S. Patent Office Finds Watersafe™ Treatment Covers Cell Phones, Smart Phones, Tablets, Computers and More January 5th, 2015

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE