Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 3-D printing could lead to tiny medical implants, electronics, robots, more

Photo by Jennifer Lewis

For the first time, a research team from Harvard University and the University of Illinois at Urbana-Champaign demonstrated the ability to 3D-print a battery. This image shows the interlaced stack of electrodes that were printed layer by layer to create the working anode and cathode of a microbattery.
Photo by Jennifer Lewis

For the first time, a research team from Harvard University and the University of Illinois at Urbana-Champaign demonstrated the ability to 3D-print a battery. This image shows the interlaced stack of electrodes that were printed layer by layer to create the working anode and cathode of a microbattery.

Abstract:
3-D printing now can be used to print lithium-ion microbatteries the size of a grain of sand. The printed microbatteries could supply electricity to tiny devices in fields from medicine to communications, including many that have lingered on lab benches for lack of a battery small enough to fit the device, yet providing enough stored energy to power it.



To create the microbattery, a custom-built 3D printer extrudes special inks through a nozzle narrower than a human hair. Those inks solidify to create the battery's anode (red) and cathode (purple), layer by layer. A case (green) then encloses the electrodes and the electrolyte solution added to create a working microbattery.

3-D printing could lead to tiny medical implants, electronics, robots, more

Boston, MA | Posted on June 18th, 2013

To make the microbatteries, a team based at Harvard University and the University of Illinois at Urbana-Champaign printed precisely interlaced stacks of tiny battery electrodes, each less than the diameter of a human hair.

"Not only did we demonstrate for the first time that we can 3-D-print a battery, we demonstrated it in the most rigorous way," said Jennifer Lewis, the senior author of the study, who is the Hansjörg Wyss Professor of Biologically Inspired Engineering at the Harvard School of Engineering and Applied Sciences (SEAS), and a core faculty member of the Wyss Institute for Biologically Inspired Engineering at Harvard University. Lewis co-led the project in her prior position at Illinois, in collaboration with Shen Dillon, a U. of I. professor of materials science and engineering.

The results will be published online on June 18 in the journal Advanced Materials.

In recent years engineers have invented many miniaturized devices, including medical implants, flying insect-like robots, and tiny cameras and microphones that fit on a pair of glasses. But often the batteries that power them are as large as or larger than the devices themselves - which defeats the purpose of building small.

To get around this problem, manufacturers have traditionally deposited thin films of solid materials to build the electrodes. However, because of their ultra-thin design, these solid-state micro-batteries do not pack sufficient energy to power tomorrow's miniaturized devices.

The scientists realized they could pack more energy if they could create stacks of tightly interlaced, ultrathin electrodes that were built out of plane. For this they turned to 3-D printing. 3-D printers follow instructions from three-dimensional computer drawings, depositing successive layers of material - inks - to build a physical object from the ground up, much like stacking a deck of cards one at a time. The technique is used in a range of fields, from producing crowns in dental labs to rapid prototyping of aerospace, automotive and consumer goods. Lewis' group has greatly expanded the capabilities of 3-D printing. They have designed a broad range of functional inks - inks with useful chemical and electrical properties. And they have used those inks with their custom-built 3-D printers to create precise structures with the electronic, optical, mechanical or biologically relevant properties they want.

To print 3-D electrodes, Lewis' group first created and tested several specialized inks. Unlike the ink in an office inkjet printer, which comes out as droplets of liquid that wet the page, the inks developed for extrusion-based 3-D printing must fulfill two difficult requirements. They must exit fine nozzles like toothpaste from a tube, and they must immediately harden into their final form.

In this case, the inks also had to function as electrochemically active materials to create working anodes and cathodes, and they had to harden into layers that are as narrow as those produced by thin-film manufacturing methods. To accomplish these goals, the researchers created an ink for the anode with nanoparticles of one lithium metal oxide compound, and an ink for the cathode from nanoparticles of another. The printer deposited the inks onto the teeth of two gold combs, creating a tightly interlaced stack of anodes and cathodes. Then the researchers packaged the electrodes into a tiny container and filled it with an electrolyte solution to complete the battery.

Next, they measured how much energy could be packed into the tiny batteries, how much power they could deliver, and how long they held a charge. "The electrochemical performance is comparable to commercial batteries in terms of charge and discharge rate, cycle life and energy densities," Dillon said. "We're just able to achieve this on a much smaller scale." Dillon also is affiliated with the Frederick Seitz Materials Research Laboratory and the Beckman Institute for Advanced Science and Technology at the U. of I.

"Jennifer's innovative microbattery ink designs dramatically expand the practical uses of 3-D printing, and simultaneously open up entirely new possibilities for miniaturization of all types of devices, both medical and non-medical," said Wyss Founding Director Donald Ingber. "It's tremendously exciting."

The work was supported by the National Science Foundation and the DOE Energy Frontier Research Center on Light-Material Interactions in Energy Conversion. In addition to Lewis and Dillon, the paper's authors included lead author Ke Sun, a graduate student in materials science and engineering at Illinois; Teng-Sing Wei, a graduate student at Harvard SEAS; Bok Yeop Ahn, a senior research scientist at the Wyss Institute and SEAS; and Jung Yoon Seo, a visiting scientist in the Lewis group, from the Korea Advanced Institute of Science and Technology.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Jennifer Lewis
617-496-0233


To contact
Shen Dillon
217-244-5622


This release was drafted by
Dan Ferber
Wyss Institute for Biologically Inspired Engineering
Harvard University

617-432-1547

Other media contact:
Harvard School of Engineering and Applied Sciences
Caroline Perry

617-496-1351

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “3-D Printing of Interdigitated Li-Ion Microbattery Architectures,” is available online:

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Videos/Movies

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Thin films

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

3x improvement in wear resistance from Carbodeon nanodiamond-enhanced electroless nickel plating October 14th, 2014

3D printing

3DXNano™ ESD Carbon Nanotube 3D Printing Filament - optimized for demanding 3D printing applications in the semi-con and electronics industry October 16th, 2014

ORNL research reveals unique capabilities of 3-D printing October 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Nanomedicine

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Research partnerships

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE