Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Spot-welding graphene nanoribbons atom by atom

Abstract:
Scientists at Aalto University and Utrecht University have created single atom contacts between gold and graphene nanoribbons.

Spot-welding graphene nanoribbons atom by atom

Aalto, Finland | Posted on June 13th, 2013

In their article published in Nature Communications, the research team demonstrates how to make electrical contacts with single chemical bonds to graphene nanoribbons. Graphene is a single layer of carbon atoms arranged in a honeycomb lattice. It is anticipated to be a revolutionising material for future electronics.

Graphene transistors functioning at room temperature require working at the size scale of less than 10 nanometres. This means that the graphene nanostructures have to be only a few tens of atoms in width. These transistors will need atomically precise electrical contacts. A team of researchers have now demonstrated experimentally how this can be done.

In their article the scientists address the problem by demonstrating how a single chemical bond can be used to make an electrical contact to a graphene nanoribbon.

- We cannot use alligator clips on the atomic scale. Using well-defined chemical bonds is the way forward for graphene nanostructures to realise their potential in future electronics, says Professor Peter Liljeroth who heads the Atomic Scale Physics group at Aalto University.

The team used atomic force microscopy (AFM) and scanning tunnelling microscopy (STM) to map the structure of the graphene nanoribbons with atomic resolution. The researchers used voltage pulses from the tip of the scanning tunnelling microscope to form single bonds to the graphene nanoribbons - precisely at a specific atomic location. The pulse removes a single hydrogen atom from the end of a graphene nanoribbon and this initiates the bond formation.

- Combined AFM and STM allows us to characterise the graphene nanostructures atom-by-atom, which is critical in understanding how the structure, the bonds with the contacts and their electrical properties are related, explains Dr Ingmar Swart who leads the team concentrating on STM and AFM measurements at Utrecht University

Combining the microscopy experiments with theoretical modelling, the team developed a detailed picture of the contacted nanoribbon properties. The most significant discovery is that a single chemical bond forms an electronically transparent contact with the graphene nanoribbon - without affecting its overall electronic structure. This may be the key to using graphene nanostructures in future electronic devices, as the contact does not change the intrinsic ribbon properties.

- These experiments on atomically well-defined structures allow us to quantitatively compare theory and experiment. This is a great opportunity to test novel theoretical ideas, concludes Dr Ari Harju, leader of the theoretical team in the project at Aalto University.

The study was performed at Aalto University Department of Applied Physics and at the Debye Institute in Utrecht University. The groups at Aalto are part of the Academy of Finland's Centres of Excellence in "Low Temperature Quantum Phenomena and Devices" and "Computational Nanosciences". Academy of Finland and the European Research Council ERC funded the research.

####

For more information, please click here

Contacts:
Peter Liljeroth

358-503-636-115

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article in Nature Communications ‘Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom’ (nature.com):

Related News Press

News and information

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Graphene

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Graphenea opens US branch October 16th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Discoveries

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE