Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New quantum dot technique combines best of optical and electron microscopy

Much like in an old tube television where a beam of electrons moves over a phosphor screen to create images, the new microscopy technique works by scanning a beam of electrons over a sample that has been coated with specially engineered quantum dots. The dots absorb the energy and emit it as visible light that interacts with the sample at close range. The scattered photons are collected using a similarly closely placed photodetector (not depicted), allowing an image to be constructed.

Credit: Dill/NIST
Much like in an old tube television where a beam of electrons moves over a phosphor screen to create images, the new microscopy technique works by scanning a beam of electrons over a sample that has been coated with specially engineered quantum dots. The dots absorb the energy and emit it as visible light that interacts with the sample at close range. The scattered photons are collected using a similarly closely placed photodetector (not depicted), allowing an image to be constructed.

Credit: Dill/NIST

Abstract:
It's not reruns of "The Jetsons", but researchers working at the National Institute of Standards and Technology (NIST) have developed a new microscopy technique that uses a process similar to how an old tube television produces a picture—cathodoluminescence—to image nanoscale features. Combining the best features of optical and scanning electron microscopy, the fast, versatile, and high-resolution technique allows scientists to view surface and subsurface features potentially as small as 10 nanometers in size.

New quantum dot technique combines best of optical and electron microscopy

Gaithersburg, MD | Posted on June 12th, 2013

The new microscopy technique, described in the journal AIP Advances,* uses a beam of electrons to excite a specially engineered array of quantum dots, causing them to emit low-energy visible light very close to the surface of the sample, exploiting so-called "near-field" effects of light. By correlating the local effects of this emitted light with the position of the electron beam, spatial images of these effects can be reconstructed with nanometer-scale resolution.

The technique neatly evades two problems in nanoscale microscopy, the diffraction limit that restricts conventional optical microscopes to resolutions no better than about half the wavelength of the light (so about 250 nm for green light), and the relatively high energies and sample preparation requirements of electron microscopy that are destructive to fragile specimens like tissue.

NIST researcher Nikolai Zhitenev, a co-developer of the technique, had the idea a few years ago to use a phosphor coating to produce light for near-field optical imaging, but at the time, no phosphor was available that was thin enough. Thick phosphors cause the light to diverge, severely limiting the image resolution. This changed when the NIST researchers teamed with researchers from a company that builds highly engineered and optimized quantum dots for lighting applications. The quantum dots potentially could do the same job as a phosphor, and be applied in a coating both homogenous and thick enough to absorb the entire electron beam while also sufficiently thin so that the light produced does not have to travel far to the sample.

The collaborative effort found that the quantum dots, which have a unique core-shell design, efficiently produced low-energy photons in the visible spectrum when energized with a beam of electrons. A potential thin-film light source in hand, the group developed a deposition process to bind them to specimens as a film with a controlled thickness of approximately 50 nm.

Much like in an old tube television where a beam of electrons moves over a phosphor screen to create images, the new technique works by scanning a beam of electrons over a sample that has been coated with the quantum dots. The dots absorb the electrons' energy and emit it as visible light that interacts with and penetrates the surface over which it has been coated. After interacting with the sample, the scattered photons are collected using a closely placed photodetector, allowing an image to be constructed. The first demonstration of the technique was used to image the natural nanostructure of the photodetector itself. Because both the light source and detector are so close to the sample, the diffraction limit doesn't apply, and much smaller objects can be imaged.

"Initially, our research was driven by our desire to study how inhomogeneities in the structure of polycrystalline photovoltaics could affect the conversion of sunlight to electricity and how these devices can be improved," says Heayoung Yoon, the lead author of the paper. "But we quickly realized that this technique could also be adapted to other research regimes, most notably imaging for biological and cellular samples, wet samples, samples with rough surfaces, as well as organic photovoltaics. We are anxious to make this technique available to the wider research community and see the results."

This work was a collaboration among researchers from NIST; the Maryland NanoCenter at the University of Maryland, College Park; Worcester Polytechnic Institute; QD Vision; and Sandia National Laboratories.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Mark Esser

301-975-8735

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

* H. Yoon, Y, Lee, C. Bohn, S. Ko, A. Gianfrancesco, J. Steckel, S. Coe-Sullivan, A. Talin and N. Zhitenev. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots. AIP Advances. Published online 10 June 2013:

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Laboratories

Relax, just break it July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

Imaging

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Tools

Relax, just break it July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Quantum Dots/Rods

Individual quantum dots imaged in 3-D for first time February 28th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Research partnerships

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project