Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Next-generation transistor outperforms other carbon-based designs

Chongwu Zhou, corresponding author of a paper about the transistor that was published online by ACS Nano
Chongwu Zhou, corresponding author of a paper about the transistor that was published online by ACS Nano

Abstract:
A team of engineers from USC has constructed the highest-performing carbon nanotube transistor to date.

Next-generation transistor outperforms other carbon-based designs

Los Angeles, CA | Posted on May 7th, 2013

Next-generation transistor outperforms other carbon-based designs

By Robert Perkins
May 7, 2013

A team of engineers from USC has constructed the highest-performing carbon nanotube transistor to date.

Transistors are semiconductor switches and amplifiers that are key components of almost all electronic devices, from radios to cellphones to computers.

The new carbon nanotube transistor has an extrinsic performance — the limit of its practical, usable operating frequency — of 25 Gigahertz (GHz). By comparison, its closest competitor, built by the Institut d'Électronique de Microélectronique et de Nanotechnologie, peaks at 15 GHz.

"Carbon nanotubes have unique properties and great potential in advanced electronic application," said Chongwu Zhou, professor at the USC Viterbi School of Engineering and corresponding author of a paper about the transistor that was published online by ACS Nano on April 16. "This is the very first report of analog circuits based on self-aligned nanotube array transistors operated in the gigahertz regime.

"The characterization of nanotube transistor-based analog circuits is of great importance for further exploring the potential of nanotubes in high-frequency applications with fast speed and low-power consumption requirement," he added.

Zhou led a team that included USC PhD students Yuchi Che, Yuncheng Lin and Pyo Jae Kim.

The new transistor takes advantage of a new T-shaped design that is a mere 200 nanometers wide. The design helps reduce parasitic effects on the transistor's performance and boosts the speed of the transistor's response by scaling down its channel length. Zhou and his team recently patented the design.

Scientists have long eyed carbon nanotubes as a replacement for silicon semiconductors in commercial electronics because carbon has superior electrical properties and can be used to build smaller transistors.

Though current carbon nanotube-based designs come nowhere near the older silicon technology — which can perform at around 500 GHz — they have the potential, theoretically, to reach 1,000 GHz frequency performance.

"It is a significant step toward the practical application of carbon nanotube RF transistor as a promising candidate for next-generation electronics," said Che, lead author of the ACS Nano paper.

Zhou and his research group continue to work on optimizing carbon nanotube-based analog electronics. Their final goal is to generate carbon nanotube transistors and circuits that offer superior performance to traditional industrial technology.

This research as funded by the Joint KACST/California Center of Excellence and the Office of Naval Research (ONR).

####

For more information, please click here

Contacts:
Robert Perkins
(213) 740-9226

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Govt.-Legislation/Regulation/Funding/Policy

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Chip Technology

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Nanotubes/Buckyballs/Fullerenes

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Discoveries

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Announcements

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Military

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project