Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Next-generation transistor outperforms other carbon-based designs

Chongwu Zhou, corresponding author of a paper about the transistor that was published online by ACS Nano
Chongwu Zhou, corresponding author of a paper about the transistor that was published online by ACS Nano

Abstract:
A team of engineers from USC has constructed the highest-performing carbon nanotube transistor to date.

Next-generation transistor outperforms other carbon-based designs

Los Angeles, CA | Posted on May 7th, 2013

Next-generation transistor outperforms other carbon-based designs

By Robert Perkins
May 7, 2013

A team of engineers from USC has constructed the highest-performing carbon nanotube transistor to date.

Transistors are semiconductor switches and amplifiers that are key components of almost all electronic devices, from radios to cellphones to computers.

The new carbon nanotube transistor has an extrinsic performance — the limit of its practical, usable operating frequency — of 25 Gigahertz (GHz). By comparison, its closest competitor, built by the Institut d'Électronique de Microélectronique et de Nanotechnologie, peaks at 15 GHz.

"Carbon nanotubes have unique properties and great potential in advanced electronic application," said Chongwu Zhou, professor at the USC Viterbi School of Engineering and corresponding author of a paper about the transistor that was published online by ACS Nano on April 16. "This is the very first report of analog circuits based on self-aligned nanotube array transistors operated in the gigahertz regime.

"The characterization of nanotube transistor-based analog circuits is of great importance for further exploring the potential of nanotubes in high-frequency applications with fast speed and low-power consumption requirement," he added.

Zhou led a team that included USC PhD students Yuchi Che, Yuncheng Lin and Pyo Jae Kim.

The new transistor takes advantage of a new T-shaped design that is a mere 200 nanometers wide. The design helps reduce parasitic effects on the transistor's performance and boosts the speed of the transistor's response by scaling down its channel length. Zhou and his team recently patented the design.

Scientists have long eyed carbon nanotubes as a replacement for silicon semiconductors in commercial electronics because carbon has superior electrical properties and can be used to build smaller transistors.

Though current carbon nanotube-based designs come nowhere near the older silicon technology — which can perform at around 500 GHz — they have the potential, theoretically, to reach 1,000 GHz frequency performance.

"It is a significant step toward the practical application of carbon nanotube RF transistor as a promising candidate for next-generation electronics," said Che, lead author of the ACS Nano paper.

Zhou and his research group continue to work on optimizing carbon nanotube-based analog electronics. Their final goal is to generate carbon nanotube transistors and circuits that offer superior performance to traditional industrial technology.

This research as funded by the Joint KACST/California Center of Excellence and the Office of Naval Research (ONR).

####

For more information, please click here

Contacts:
Robert Perkins
(213) 740-9226

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Chip Technology

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Surprise discovery in the search for energy efficient information storage August 10th, 2017

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Discoveries

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Military

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project