Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Improving materials that convert heat to electricity and vice-versa

Abstract:
Thermoelectric materials can be used to turn waste heat into electricity or to provide refrigeration without any liquid coolants, and a research team from the University of Michigan has found a way to nearly double the efficiency of a particular class of them that's made with organic semiconductors.

Improving materials that convert heat to electricity and vice-versa

Ann Arbor, MI | Posted on May 5th, 2013

Organic semiconductors are carbon-rich compounds that are relatively cheap, abundant, lightweight and tough. But they haven't traditionally been considered candidate thermoelectric materials because they have been inefficient in carrying out the essential heat-to-electricity conversion process.

Today's most efficient thermoelectric materials are made of relatively rare inorganic semiconductors such as bismuth, tellurium and selenium that are expensive, brittle and often toxic. Still, they manage to convert heat into electricity more than four times as efficiently as the organic semiconductors created to date.

This greater efficiency is reflected in a metric known by researchers as the thermoelectric "figure of merit." This metric is approximately 1 near room temperature for state-of-the-art inorganic thermoelectric materials, but only 0.25 for organic semiconductors.

U-M researchers improved upon the state-of-the-art in organic semiconductors by nearly 70 percent, achieving a figure-of-merit of 0.42 in a compound known as PEDOT:PSS.

"That's about half as efficient as current inorganic semiconductors," said project leader Kevin Pipe, an associate professor of mechanical engineering as well as electrical engineering and computer science. Pipe is a co-author of a paper on the research published in Nature Materials on May 5, 2013.

PEDOT:PSS is a mixture of two polymers: the conjugated polymer PEDOT and the polyelectrolyte PSS. It has previously been used as a transparent electrode for devices such as organic LEDs and solar cells, as well as an antistatic agent for materials such as photographic films.

One of the ways scientists and engineers increase a material's capacity for conducting electricity is to add impurities to it in a process known as doping. When these added ingredients, called dopants, bond to the host material, they give it an electrical carrier. Each of these additional carriers enhances the material's electrical conductivity.

In PEDOT doped by PSS, however, only small fraction of the PSS molecules actually bond to the host PEDOT; the rest of the PSS molecules do not become ionized and are inactive. The researchers found that these excess PSS molecules dramatically inhibit both the electrical conductivity and thermoelectric performance of the material.

"The trouble is that the inactive PSS molecules push the PEDOT molecules further apart, making it harder for electrons to jump between PEDOT molecules," Pipe said. "While ionized PSS molecules improve electrical conductivity, non-ionized PSS molecules reduce it."

To improve its thermoelectric efficiency, the researchers restructured the material at the nanoscale. Pipe and his team figured out how to use certain solvents to remove some of these non-ionized PSS dopant molecules from the mixture, leading to large increases in both the electrical conductivity and the thermoelectric energy conversion efficiency.

This particular organic thermoelectric material would be effective at temperatures up to about 250 degrees Fahrenheit.

"Eventually this technology could allow us to create a flexible sheet---think of Saran Wrap---that can be rolled out or wrapped around a hot object to generate electricity or provide cooling," Pipe said.

The paper is titled "Engineered doping of organic semiconductors for enhanced thermoelectric efficiency." This work was supported as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences.

####

For more information, please click here

Contacts:
Nicole Casal Moore

734-647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Kevin Pipe:

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Discoveries

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Materials/Metamaterials

Record high photoconductivity for new metal-organic framework material December 15th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Printing Flexible Graphene Supercapacitors December 1st, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project