Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Improving materials that convert heat to electricity and vice-versa

Abstract:
Thermoelectric materials can be used to turn waste heat into electricity or to provide refrigeration without any liquid coolants, and a research team from the University of Michigan has found a way to nearly double the efficiency of a particular class of them that's made with organic semiconductors.

Improving materials that convert heat to electricity and vice-versa

Ann Arbor, MI | Posted on May 5th, 2013

Organic semiconductors are carbon-rich compounds that are relatively cheap, abundant, lightweight and tough. But they haven't traditionally been considered candidate thermoelectric materials because they have been inefficient in carrying out the essential heat-to-electricity conversion process.

Today's most efficient thermoelectric materials are made of relatively rare inorganic semiconductors such as bismuth, tellurium and selenium that are expensive, brittle and often toxic. Still, they manage to convert heat into electricity more than four times as efficiently as the organic semiconductors created to date.

This greater efficiency is reflected in a metric known by researchers as the thermoelectric "figure of merit." This metric is approximately 1 near room temperature for state-of-the-art inorganic thermoelectric materials, but only 0.25 for organic semiconductors.

U-M researchers improved upon the state-of-the-art in organic semiconductors by nearly 70 percent, achieving a figure-of-merit of 0.42 in a compound known as PEDOT:PSS.

"That's about half as efficient as current inorganic semiconductors," said project leader Kevin Pipe, an associate professor of mechanical engineering as well as electrical engineering and computer science. Pipe is a co-author of a paper on the research published in Nature Materials on May 5, 2013.

PEDOT:PSS is a mixture of two polymers: the conjugated polymer PEDOT and the polyelectrolyte PSS. It has previously been used as a transparent electrode for devices such as organic LEDs and solar cells, as well as an antistatic agent for materials such as photographic films.

One of the ways scientists and engineers increase a material's capacity for conducting electricity is to add impurities to it in a process known as doping. When these added ingredients, called dopants, bond to the host material, they give it an electrical carrier. Each of these additional carriers enhances the material's electrical conductivity.

In PEDOT doped by PSS, however, only small fraction of the PSS molecules actually bond to the host PEDOT; the rest of the PSS molecules do not become ionized and are inactive. The researchers found that these excess PSS molecules dramatically inhibit both the electrical conductivity and thermoelectric performance of the material.

"The trouble is that the inactive PSS molecules push the PEDOT molecules further apart, making it harder for electrons to jump between PEDOT molecules," Pipe said. "While ionized PSS molecules improve electrical conductivity, non-ionized PSS molecules reduce it."

To improve its thermoelectric efficiency, the researchers restructured the material at the nanoscale. Pipe and his team figured out how to use certain solvents to remove some of these non-ionized PSS dopant molecules from the mixture, leading to large increases in both the electrical conductivity and the thermoelectric energy conversion efficiency.

This particular organic thermoelectric material would be effective at temperatures up to about 250 degrees Fahrenheit.

"Eventually this technology could allow us to create a flexible sheet---think of Saran Wrap---that can be rolled out or wrapped around a hot object to generate electricity or provide cooling," Pipe said.

The paper is titled "Engineered doping of organic semiconductors for enhanced thermoelectric efficiency." This work was supported as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences.

####

For more information, please click here

Contacts:
Nicole Casal Moore

734-647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Kevin Pipe:

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Materials/Metamaterials

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE