Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene layers dramatically reduce wear and friction on sliding steel surfaces

Graphene's hexagonal structure makes it an excellent lubricant.
Graphene's hexagonal structure makes it an excellent lubricant.

Abstract:
Sometimes, all it takes is an extremely small amount of material to make a big difference.

Scientists at Argonne National Laboratory have recently discovered that they could substitute one-atom-thick graphene layers for oil-based lubricants on sliding steel surfaces, enabling a dramatic reduction in the amount of wear and friction.

Graphene layers dramatically reduce wear and friction on sliding steel surfaces

Argonne, IL | Posted on April 26th, 2013

New studies led by Argonne materials scientists Anirudha Sumant and Ali Erdemir showed that graphene is able to drastically reduce the wear rate and the coefficient of friction (COF) of steel. The marked reductions in friction and wear are attributed to the low shear and highly protective nature of graphene, which also prevented oxidation of the steel surfaces when present at sliding contact interfaces.

Stainless steel ball bearings form an integral part of many moving mechanical machines, ranging from table fans to giant wind turbines.

"Reducing energy and materials losses in these moving mechanical systems due to friction and wear remains one of the greatest engineering challenges of our time," Sumant said.

Current lubricants reduce friction and wear either through the use of environmentally unfriendly additives, or in some cases, solid lubricants such as molybdenum disulfide or boric acid. The oil-based lubricants need to be consistently reapplied, producing additional waste. The cost of applying solid lubricant coatings is rather high and due to finite thickness, they do not last very long and must also be expensively reapplied.

On the other hand, coatings made of graphene flakes are not harmful to the environment and can last a considerable length of time due to the flakes' ability to reorient themselves during initial wear cycles, providing a low COF during sliding.

Sumant and Erdemir estimated that the reduced loss of energy to friction offered by new materials would yield a potential energy savings of 2.46 billion kilowatt-hours per year, equivalent to 420,000 barrels of oil.

"Applying or reapplying the graphene coating does not require any additional processing steps other than just sprinkling a small amount of solution on the surface of interest, making this process simple, cost-effective, and environmentally friendly," said Diana Berman, a postdoctoral researcher at Argonne's Center for Nanoscale Materials (CNM).

"It is interesting to see how a one-atom-thick material affects the properties at a larger scale," Sumant said. "I believe that graphene has potential as a solid lubricant in the automotive industry and, once fully developed, it could have positive impacts on many mechanical applications that could lead to a tremendous savings of energy."

Sumant is associated with Argonne's CNM, while Erdemir works for Argonne's Energy Systems Division. Funding came from Argonne's Laboratory-Directed Research and Development office.

The team recently published their findings in two consecutive papers in the high impact journal Carbon:

D. Berman, A. Erdemir, A.V. Sumant: "Few layer graphene to reduce wear and friction on sliding steel surfaces". Carbon, 54, 454-459 (2013)

D. Berman, A. Erdemir, A.V. Sumant: "Reduced Wear and Friction Enabled by Graphene Layers on Sliding Steel Surfaces in Dry Nitrogen," Carbon, in press. 

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together, the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories.

For more information, please click here

Contacts:
Jared Sagoff
(630) 252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

D. Berman, A. Erdemir, A.V. Sumant: “Reduced Wear and Friction Enabled by Graphene Layers on Sliding Steel Surfaces in Dry Nitrogen,” Carbon, in press:

Related News Press

News and information

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Laboratories

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Graphene/ Graphite

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Govt.-Legislation/Regulation/Funding/Policy

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Discoveries

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Materials/Metamaterials

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Announcements

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Energy

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project