Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene layers dramatically reduce wear and friction on sliding steel surfaces

Graphene's hexagonal structure makes it an excellent lubricant.
Graphene's hexagonal structure makes it an excellent lubricant.

Abstract:
Sometimes, all it takes is an extremely small amount of material to make a big difference.

Scientists at Argonne National Laboratory have recently discovered that they could substitute one-atom-thick graphene layers for oil-based lubricants on sliding steel surfaces, enabling a dramatic reduction in the amount of wear and friction.

Graphene layers dramatically reduce wear and friction on sliding steel surfaces

Argonne, IL | Posted on April 26th, 2013

New studies led by Argonne materials scientists Anirudha Sumant and Ali Erdemir showed that graphene is able to drastically reduce the wear rate and the coefficient of friction (COF) of steel. The marked reductions in friction and wear are attributed to the low shear and highly protective nature of graphene, which also prevented oxidation of the steel surfaces when present at sliding contact interfaces.

Stainless steel ball bearings form an integral part of many moving mechanical machines, ranging from table fans to giant wind turbines.

"Reducing energy and materials losses in these moving mechanical systems due to friction and wear remains one of the greatest engineering challenges of our time," Sumant said.

Current lubricants reduce friction and wear either through the use of environmentally unfriendly additives, or in some cases, solid lubricants such as molybdenum disulfide or boric acid. The oil-based lubricants need to be consistently reapplied, producing additional waste. The cost of applying solid lubricant coatings is rather high and due to finite thickness, they do not last very long and must also be expensively reapplied.

On the other hand, coatings made of graphene flakes are not harmful to the environment and can last a considerable length of time due to the flakes' ability to reorient themselves during initial wear cycles, providing a low COF during sliding.

Sumant and Erdemir estimated that the reduced loss of energy to friction offered by new materials would yield a potential energy savings of 2.46 billion kilowatt-hours per year, equivalent to 420,000 barrels of oil.

"Applying or reapplying the graphene coating does not require any additional processing steps other than just sprinkling a small amount of solution on the surface of interest, making this process simple, cost-effective, and environmentally friendly," said Diana Berman, a postdoctoral researcher at Argonne's Center for Nanoscale Materials (CNM).

"It is interesting to see how a one-atom-thick material affects the properties at a larger scale," Sumant said. "I believe that graphene has potential as a solid lubricant in the automotive industry and, once fully developed, it could have positive impacts on many mechanical applications that could lead to a tremendous savings of energy."

Sumant is associated with Argonne's CNM, while Erdemir works for Argonne's Energy Systems Division. Funding came from Argonne's Laboratory-Directed Research and Development office.

The team recently published their findings in two consecutive papers in the high impact journal Carbon:

D. Berman, A. Erdemir, A.V. Sumant: "Few layer graphene to reduce wear and friction on sliding steel surfaces". Carbon, 54, 454-459 (2013)

D. Berman, A. Erdemir, A.V. Sumant: "Reduced Wear and Friction Enabled by Graphene Layers on Sliding Steel Surfaces in Dry Nitrogen," Carbon, in press. 

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together, the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories.

For more information, please click here

Contacts:
Jared Sagoff
(630) 252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

D. Berman, A. Erdemir, A.V. Sumant: “Reduced Wear and Friction Enabled by Graphene Layers on Sliding Steel Surfaces in Dry Nitrogen,” Carbon, in press:

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Graphene

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Graphene 2015: remarkable program online February 23rd, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Laboratories

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Materials/Metamaterials

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE