Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bold Move Forward in Molecular Analyses: Berkeley Lab Researchers Develop New Metrics for X-ray and Neutron Analysis of Flexible Macromolecules

Small angle scattering (SAS) with X-rays (pictured here) or neutrons is the only imaging technique that provides a complete snapshot of the thermodynamic state of macromolecules in a single image.
Small angle scattering (SAS) with X-rays (pictured here) or neutrons is the only imaging technique that provides a complete snapshot of the thermodynamic state of macromolecules in a single image.

Abstract:
A dramatic leap forward in the ability of scientists to study the structural states of macromolecules such as proteins and nanoparticles in solution has been achieved by a pair of researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab). The researchers have developed a new set of metrics for analyzing data acquired via small angle scattering (SAS) experiments with X-rays (SAXS) or neutrons (SANS). Among other advantages, this will reduce the time required to collect data by up to 20 times.

Bold Move Forward in Molecular Analyses: Berkeley Lab Researchers Develop New Metrics for X-ray and Neutron Analysis of Flexible Macromolecules

Berkeley, CA | Posted on April 25th, 2013

"SAS is the only technique that provides a complete snapshot of the thermodynamic state of macromolecules in a single image," says Robert Rambo, a scientist with Berkeley Lab's Physical Biosciences Division, who developed the new SAS metrics along with John Tainer of Berkeley Lab's Life Sciences Division and the Scripps Research Institute.

"In the past, SAS analyses have focused on particles that were well-behaved in the sense that they assume discrete structural states," Rambo says. "But in biology, many proteins and protein complexes are not well-behaved, they can be highly flexible, creating diffuse structural states. Our new set of metrics fully extends SAS to all particle types, well-behaved and not well-behaved."

Rambo and Tainer describe their new SAS metrics in a paper titled "Accurate assessment of mass, models and resolution by small-angle scattering." The paper has been published in the journal Nature.

Says co-author Tainer, "The SAS metrics reported in our Nature paper should have game-changing impacts on accurate high-throughput and objective analyses of the flexible molecular machines that control cell biology."

In SAS imaging, beams of X-rays or neutrons sent through a sample produce tiny collisions between the X-rays or neutrons and nano- or subnano-sized particles within the sample. How these collisions scatter are unique for each particle and can be measured to determine the particle's shape and size. The analytic metrics developed by Rambo and Tainer are predicated on the discovery by Rambo of an SAS invariant, meaning its value does not change no matter how or where the measurement was performed. This invariant has been dubbed the "volume-of-correlation" and its value is derived from the scattered intensities of X-rays or neutrons that are specific to the structural states of particles, yet are independent of their concentrations and compositions.

"The volume-of-correlation can be used for following the shape changes of a protein or nanoparticle, or as a quality metric for seeing if the data collection was corrupted," Rambo says. "This SAS invariant applies equally well to compact and flexible particles, and utilizes the entire dataset, which makes it more reliable than traditional SAS analytics, which utilize less than 10-percent of the data."

The volume-of-correlation was shown to also define a ratio that determines the molecular mass of a particle. Accurate determination of molecular mass has been a major difficulty in SAS analysis because previous methods required an accurate particle concentration, the assumption of a compact near-spherical shape, or measurements on an absolute scale.

"Such requirements hinder both accuracy and throughput of mass estimates by SAS," Rambo says. "We've established a SAS-based statistic suitable for determining the molecular mass of proteins, nucleic acids or mixed complexes in solution without concentration or shape assumptions."

The combination of the volume-of-correlation with other metrics developed by Rambo and Tainer can provide error-free recovery of SAS data with a signal-to-noise ratio below background levels. This holds profound implications for high-throughput SAS data collection strategies not only for current synchrotron-based X-ray sources, such as Berkeley Lab's Advanced Light Source, but also for the next-generation light sources based on free-electron lasers that are now being designed.

"With our metrics, it should be possible to collect and analyze SAS data at the theoretical limit," Rambo says. "This means we can reduce data collection times so that a 90- minute exposure time used by commercial instruments could be cut to nine minutes."

Adds Tainer, "The discovery of the first x-ray scattering invariant coincided with the genesis of the Berkeley Lab some 75 years ago. This new discovery of the volume-of-correlation invariant unlocks doors for future analyses of flexible biological samples on the envisioned powerful next-generation light sources.

This research was funded through DOE's Office of Science and the National Institutes of Health.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more about the research of John Tainer, go here:

Related News Press

Laboratories

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Imaging

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Govt.-Legislation/Regulation/Funding/Policy

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Tools

Scientists take nanoparticle snapshots February 10th, 2016

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic