Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bold Move Forward in Molecular Analyses: Berkeley Lab Researchers Develop New Metrics for X-ray and Neutron Analysis of Flexible Macromolecules

Small angle scattering (SAS) with X-rays (pictured here) or neutrons is the only imaging technique that provides a complete snapshot of the thermodynamic state of macromolecules in a single image.
Small angle scattering (SAS) with X-rays (pictured here) or neutrons is the only imaging technique that provides a complete snapshot of the thermodynamic state of macromolecules in a single image.

Abstract:
A dramatic leap forward in the ability of scientists to study the structural states of macromolecules such as proteins and nanoparticles in solution has been achieved by a pair of researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab). The researchers have developed a new set of metrics for analyzing data acquired via small angle scattering (SAS) experiments with X-rays (SAXS) or neutrons (SANS). Among other advantages, this will reduce the time required to collect data by up to 20 times.

Bold Move Forward in Molecular Analyses: Berkeley Lab Researchers Develop New Metrics for X-ray and Neutron Analysis of Flexible Macromolecules

Berkeley, CA | Posted on April 25th, 2013

"SAS is the only technique that provides a complete snapshot of the thermodynamic state of macromolecules in a single image," says Robert Rambo, a scientist with Berkeley Lab's Physical Biosciences Division, who developed the new SAS metrics along with John Tainer of Berkeley Lab's Life Sciences Division and the Scripps Research Institute.

"In the past, SAS analyses have focused on particles that were well-behaved in the sense that they assume discrete structural states," Rambo says. "But in biology, many proteins and protein complexes are not well-behaved, they can be highly flexible, creating diffuse structural states. Our new set of metrics fully extends SAS to all particle types, well-behaved and not well-behaved."

Rambo and Tainer describe their new SAS metrics in a paper titled "Accurate assessment of mass, models and resolution by small-angle scattering." The paper has been published in the journal Nature.

Says co-author Tainer, "The SAS metrics reported in our Nature paper should have game-changing impacts on accurate high-throughput and objective analyses of the flexible molecular machines that control cell biology."

In SAS imaging, beams of X-rays or neutrons sent through a sample produce tiny collisions between the X-rays or neutrons and nano- or subnano-sized particles within the sample. How these collisions scatter are unique for each particle and can be measured to determine the particle's shape and size. The analytic metrics developed by Rambo and Tainer are predicated on the discovery by Rambo of an SAS invariant, meaning its value does not change no matter how or where the measurement was performed. This invariant has been dubbed the "volume-of-correlation" and its value is derived from the scattered intensities of X-rays or neutrons that are specific to the structural states of particles, yet are independent of their concentrations and compositions.

"The volume-of-correlation can be used for following the shape changes of a protein or nanoparticle, or as a quality metric for seeing if the data collection was corrupted," Rambo says. "This SAS invariant applies equally well to compact and flexible particles, and utilizes the entire dataset, which makes it more reliable than traditional SAS analytics, which utilize less than 10-percent of the data."

The volume-of-correlation was shown to also define a ratio that determines the molecular mass of a particle. Accurate determination of molecular mass has been a major difficulty in SAS analysis because previous methods required an accurate particle concentration, the assumption of a compact near-spherical shape, or measurements on an absolute scale.

"Such requirements hinder both accuracy and throughput of mass estimates by SAS," Rambo says. "We've established a SAS-based statistic suitable for determining the molecular mass of proteins, nucleic acids or mixed complexes in solution without concentration or shape assumptions."

The combination of the volume-of-correlation with other metrics developed by Rambo and Tainer can provide error-free recovery of SAS data with a signal-to-noise ratio below background levels. This holds profound implications for high-throughput SAS data collection strategies not only for current synchrotron-based X-ray sources, such as Berkeley Lab's Advanced Light Source, but also for the next-generation light sources based on free-electron lasers that are now being designed.

"With our metrics, it should be possible to collect and analyze SAS data at the theoretical limit," Rambo says. "This means we can reduce data collection times so that a 90- minute exposure time used by commercial instruments could be cut to nine minutes."

Adds Tainer, "The discovery of the first x-ray scattering invariant coincided with the genesis of the Berkeley Lab some 75 years ago. This new discovery of the volume-of-correlation invariant unlocks doors for future analyses of flexible biological samples on the envisioned powerful next-generation light sources.

This research was funded through DOE's Office of Science and the National Institutes of Health.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more about the research of John Tainer, go here:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project