Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New material approach should increase solar cell efficiency

The correlated electron metal SrRuO3 exhibits strong visible slight absorption. Overlaid here on the AM1.5G solar spectrum, it can be seen that SrRuO3 absorbs more than 75 times more light than TiO2. The structural, chemical, and electronic compatibility of TiO2 and SrRuO3 further enables the fabrication of heterojunctions with exciting photovoltaic and photocatalytic response driven by hot-carrier injection.
The correlated electron metal SrRuO3 exhibits strong visible slight absorption. Overlaid here on the AM1.5G solar spectrum, it can be seen that SrRuO3 absorbs more than 75 times more light than TiO2. The structural, chemical, and electronic compatibility of TiO2 and SrRuO3 further enables the fabrication of heterojunctions with exciting photovoltaic and photocatalytic response driven by hot-carrier injection.

Abstract:
"When designing next generation solar energy conversion systems, we must first develop ways to more efficiently utilize the solar spectrum," explained Lane Martin, whose research group has done just that.

"This is a fundamentally new way of approaching these matters," said Martin, who is an assistant professor of materials science and engineering (MatSE) at Illinois. "From these materials we can imagine carbon-neutral energy production of clean-burning fuels, waste water purification and remediation, and much more."

New material approach should increase solar cell efficiency

Urbana, IL | Posted on April 23rd, 2013

Martin's research group brought together aspects of condensed matter physics, semiconductor device engineering, and photochemistry to develop a new form of high-performance solar photocatalyst based on the combination of the TiO2 (titanium dioxide) and other "metallic" oxides that greatly enhance the visible light absorption and promote more efficient utilization of the solar spectrum for energy applications. Their paper, "Strong Visible-Light Absorption and Hot-Carrier Injection in TiO2/SrRuO3 Heterostructures," appears in the journal Advanced Energy Materials.

According to Martin, the primary feature limiting the performance of oxide-based photovoltaic and/or photocatalytic systems has traditionally been the poor absorption of visible light in these often wide band gap materials. One candidate oxide material for such applications is anatase TiO2, which is arguably the most widely-studied photocatalyst due to its chemical stability, non-toxicity, low-cost, and excellent band alignment to several oxidation-reduction reactions. As the backbone of dye-sensitized solar cells, however, the presence of a light-absorbing dye accounts for a large band gap which limits efficient usage of all but the UV portion of sunlight.

"We observed that the unusual electronic structure of SrRuO3 is also responsible for unexpected optical properties including high absorption across the visible spectrum and low reflection compared to traditional metals," stated Sungki Lee, the paper's first author. "By coupling this material to TiO2 we demonstrate enhanced visible light absorption and large photocatalytic activities."

"SrRuO3 is a correlated electron oxide which is known to possess metallic-like temperature dependence of its resistivity and itinerant ferromagnetism and for its widespread utility as a conducting electrode in oxide heterostructures," Lee added. Referring to this material as a "metal," however, is likely inappropriate as the electronic structure and properties are derived from a combination of complex electronic density of states, electron correlations, and more.

Using a process called photo-excited hot-carrier injection from the SrRuO3 to the TiO2, the researchers created new heterostructures whose novel optical properties and the resulting high photoelectrochemical performance provide an interesting new approach that could advance the field of photocatalysis and further broaden the potential applications of other metallic oxides.

This work provides an exciting new approach to the challenge of designing visible-light photosensitive materials and has resulted in a provisional patent application. The work was primarily supported by the ongoing International Institute for Carbon Neutral Energy Research (I2CNER) program, a partnership between Kyushu University in Japan and the University of Illinois.

"The I2CNER project brings together some of the leading energy researchers from around the globe," explained I2CNER Director Petros Sofronis, who is also a professor in the Department of Mechanical Science and Engineering at Illinois. "Results from Dr. Martin's research group and others demonstrate that I2CNER is not only an experiment on international collaboration. It is a concerted institutionalized effort to pursue green innovation and reduced CO2 emissions, as well as to advance fundamental science and develop science-based technological solutions for the reorganization of sustainable and environmentally friendly society."

####

For more information, please click here

Contacts:
Lane Martin
Department of Materials Science and Engineering
217/244-9162


Petros Sofronis
director
International Institute for Carbon Neutral Energy Research
217/333-2636


Writer:
Rick Kubetz
Engineering Communications Office
217/244-7716

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Discoveries

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Materials/Metamaterials

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Announcements

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizardŽ AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Energy

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Solar/Photovoltaic

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project